首页> 外文学位 >Soot formation in GDI/GTDI engines.
【24h】

Soot formation in GDI/GTDI engines.

机译:GDI / GTDI发动机中的烟灰形成。

获取原文
获取原文并翻译 | 示例

摘要

A semi-detailed soot model was successfully implemented in the KIVA3v2-ERC code, which features a discrete multi-component (DMC) fuel vaporization model. A spark ignition model and the G-equation turbulent flame propagation model were also implemented for modeling direct-injection spark-ignition (DISI) engines. Chemistry parallelization for the soot model was also successfully realized in this work. Chemistry parallelization and a newly developed chemistry solver (SpeedCHEM) further reduced the computational time and enabled the successful application of the final code (KIVA-DMC-detsoot-G-SC) to DISI engines with the consideration of multi-component surrogates for real gasoline fuels and 3-D full cylinder engine grids.;The semi-detailed soot model considered: soot inception from a four-ring aromatic (A4), soot surface growth through acetylene (C2H2) and aromatics from single-ring to four-ring species (A1, A2, A3, A4), soot coagulation, and soot oxidation through O2 and OH. A reduced polycyclic aromatic hydrocarbon (PAH) chemistry mechanism was coupled with n-heptane, iso-octane and toluene chemistry mechanisms. The combination of the chemistry mechanisms and the soot model was then validated based on experiments in terms of ignition delay, fundamental premixed flames, SANDIA constant volume chamber spray combustion. The pyrolysis process is also a significant process for soot formation at the conditions of DISI engines. Important species for soot formation from toluene pyrolysis processes were also validated based on experiments, and then coupled with the current n-heptane/iso-octane/toluene/PAH chemistry mechanisms for application to DISI engines. The vaporization of wall films plays a significant role in soot formation and a grid-independent wall film vaporization model was formulated for predicting soot emissions near wall films.;Predicted in-cylinder pressure and particle size distributions (PSDs) were compared to available premixed engine experimental studies. Quantitative agreements of in-cylinder particle distributions are also obtained. The improved models were then applied to studies of soot emissions from early- and late-injection strategies in a four-valve single-cylinder gasoline DISI engine, and the trends were consistent with literature or experimental data.
机译:在KIVA3v2-ERC代码中成功实现了半详细的烟灰模型,该模型具有离散的多组分(DMC)燃料汽化模型。还建立了火花点火模型和G方程湍流火焰传播模型,以对直接喷射式火花点火(DISI)发动机进行建模。这项工作还成功实现了烟尘模型的化学平行化。化学并行化和新开发的化学求解器(SpeedCHEM)进一步减少了计算时间,并考虑到了真正汽油的多组分替代物,使得最终代码(KIVA-DMC-detsoot-G-SC)成功应用于DISI发动机燃料和3-D全缸发动机栅格;半详细的烟灰模型考虑了:从四环芳烃(A4)开始的烟灰生成,通过乙炔(C2H2)的烟灰表面生长以及从单环到四环种类的芳烃(A1,A2,A3,A4),烟灰凝结和通过O2和OH的烟灰氧化。还原的多环芳烃(PAH)化学机理与正庚烷,异辛烷和甲苯化学机理耦合。然后根据实验在点火延迟,基本预混火焰,SANDIA恒容室喷雾燃烧方面验证了化学机理和烟灰模型的结合。在DISI发动机的条件下,热解过程也是形成烟灰的重要过程。还基于实验验证了由甲苯热解过程形成烟灰的重要物种,然后将其与当前的正庚烷/异辛烷/甲苯/ PAH化学机理相结合,以应用于DISI发动机。壁膜的汽化在烟灰的形成中起着重要作用,并建立了一个独立于网格的壁膜汽化模型来预测壁膜附近的烟尘排放。将预测的缸内压力和粒径分布(PSD)与可用的预混发动机进行了比较实验研究。还获得了缸内颗粒分布的定量协议。然后将改进的模型应用于四气门单缸汽油DISI发动机的早期和晚期喷射策略的烟灰排放研究,其趋势与文献或实验数据一致。

著录项

  • 作者

    Jiao, Qi.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号