首页> 外文学位 >Aerosol synthesis of cathode materials for Na-ion and Li-ion batteries.
【24h】

Aerosol synthesis of cathode materials for Na-ion and Li-ion batteries.

机译:用于Na离子和Li离子电池的正极材料的气溶胶合成。

获取原文
获取原文并翻译 | 示例

摘要

Energy production and storage are important issues that play a key role in our daily lives. There is a need for high energy and high power systems for portable electronic devices and zero-emission vehicles. Lithium-ion batteries are crucial in addressing these needs. However, for the smart electric grid and renewable energy storage where cost is critical but weight and footprint requirement is less important, the sodium-ion battery is the most suitable power sources. To achieve both high power density and high energy density, nanostructured sphere particles with controlled porosity and high tapping density are desired for both Li-ion and Na-ion batteries. The versatile and facile ultrasonic spray pyrolysis method allows for the synthesis of a variety of electrode materials with sphere morphology. Work has been done to develop electrode materials through an aerosol method that can be readily applied to industry.;Two classes of high energy cathodes suitable for lithium-ion batteries were studied. These include the 5V spinels and lithium-rich materials. The 5V spinels are a promising class of electrodes for secondary lithium batteries. This class of material has the highest intrinsic rate capability of the intercalation cathodes with high safety, low toxicity, and low cost making it ideal for high-power applications such as electric vehicles, while the lithium-rich compounds exhibit high capacity and reasonable cycle stability.;Two classes of stable cathodes suitable for sodium-ion batteries were studied. The first was carbon coated porous hollow Na2FePO 4F spheres with 500 nm diameter and 80 nm wall thickness synthesized by a one-step template-free ultrasonic spray pyrolysis process using sucrose as the carbon source. Nano-sized porous hollow Na2FePO4F spheres allow electrolyte to penetrate into the hollow structure, and thus the electrochemical reaction can take place on both the outside and inside surface and in the pores. Also, the carbon coating on Na2FePO 4F hollow spheres enhances the electronic conductivity and charge transfer reaction kinetics. The exceptional performance of hollow Na2FePO 4F spheres combined with mature aerosol spray synthesis technology make these carbon coated porous hollow Na2FePO4F spheres very promising as cathode materials for practical applications in Na-ion batteries. Finally, P2-type earth abundant layered oxides with high energy density and long cycling stability were also developed and studied. These layered materials were investigated due to their high theoretical capacity.;A novel ultrasonic spray pyrolysis system has been developed to effectively coat any cathode, including layered oxides, with a thin layer of carbon to improve the kinetics and increase the electronic conductivity. The residence time in air is sufficiently short to allow the decomposition of the carbon source (sucrose) without further reduction of the cathode material. A vertical configuration allows the solid particles to reach the filter for collection with high efficiency. As a test sample, lithium-rich cathodes have been successfully carbon coated and compared with the bare material.
机译:能源生产和储存是重要的问题,在我们的日常生活中起着关键作用。需要用于便携式电子设备和零排放车辆的高能量和高功率系统。锂离子电池对于满足这些需求至关重要。但是,对于成本至关重要但对重量和占地面积要求不那么重要的智能电网和可再生能源存储,钠离子电池是最合适的电源。为了实现高功率密度和高能量密度,锂离子电池和钠离子电池都需要具有可控制的孔隙率和高振实密度的纳米球形球体。通用且简便的超声喷雾热解方法可合成具有球形形态的多种电极材料。通过气溶胶法开发电极材料的工作已经完成,该方法可以很容易地应用于工业。;研究了适用于锂离子电池的两类高能阴极。这些包括5V尖晶石和富含锂的材料。 5V尖晶石是用于锂二次电池的有希望的一类电极。这类材料具有插层式阴极的最高固有速率能力,具有高安全性,低毒性和低成本,使其成为电动汽车等大功率应用的理想之选,而富含锂的化合物则显示出高容量和合理的循环稳定性。;研究了适用于钠离子电池的两类稳定阴极。第一个是通过蔗糖作为碳源的一步法无模板超声喷涂热解工艺合成的碳涂层多孔中空Na2FePO 4F球,直径为500 nm,壁厚为80 nm。纳米级多孔空心Na2FePO4F球体可使电解质渗透到空心结构中,因此电化学反应可以在内,外表面以及孔中发生。同样,在Na2FePO 4F空心球上的碳涂层可增强电子电导率和电荷转移反应动力学。中空的Na2FePO 4F球体的出色性能与成熟的气溶胶喷雾合成技术相结合,使得这些碳涂层的多孔中空的Na2FePO4F球体极有希望作为Na离子电池实际应用中的阴极材料。最后,还研究开发了高能量密度,长循环稳定性的P2型稀土富集层状氧化物。对这些层状材料进行了研究,原因是它们具有很高的理论容量。已经开发了一种新型的超声波喷雾热解系统,可以在任何阴极(包括层状氧化物)上有效地覆盖一层碳薄层,以改善动力学并提高电子电导率。在空气中的停留时间足够短,以允许碳源(蔗糖)分解而无需进一步还原阴极材料。垂直配置允许固体颗粒高效到达过滤器进行收集。作为测试样品,富锂阴极已成功进行了碳涂覆,并与裸露材料进行了比较。

著录项

  • 作者

    Langrock, Alex.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Energy.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 123 p.
  • 总页数 123
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号