首页> 外文学位 >Interface Engineering of Voltage-Controlled Embedded Magnetic Random Access Memoryv
【24h】

Interface Engineering of Voltage-Controlled Embedded Magnetic Random Access Memoryv

机译:电压控制嵌入式磁性随机存取存储器的接口工程

获取原文
获取原文并翻译 | 示例

摘要

Magnetic memory that utilizes spin to store information has become one of the most promising candidates for next-generation non-volatile memory. Electric-field-assisted writing of magnetic tunnel junctions (MTJs) that exploits the voltage-controlled magnetic anisotropy (VCMA) effect offers great potential for high density and low power memory applications. This emerging Magnetoelectric Random Access Memory (MeRAM) based on the VCMA effect has been investigated due to its lower switching current, compared with traditional current-controlled devices utilizing spin transfer torque (STT) or spin-orbit torque (SOT) for magnetization switching. It is of great promise to integrate MeRAM into the advanced CMOS back-end-of-line (BEOL) processes for on-chip embedded applications, and enable non-volatile electronic systems with low static power dissipation and instant-on operation capability. To achieve the full potential of MeRAM, it is critical to design magnetic materials with high voltage-induced writing efficiency, i.e. VCMA coefficient, to allow for low write energy, low write error rate, and high density MeRAM at advanced nodes.;In this dissertation, we will first discuss the advantage of MeRAM over other memory technologies with a focus on array-level memory performance, system-level 3D integration, and scaling at advanced nodes. Then, we will introduce the physics of the VCMA effect, map out the VCMA coefficients requirements and other challenges when MeRAM is scaled down, and discuss the electrical measurement techniques used in later chapters to characterize the VCMA effect. Next, we will discuss three experimental approaches taken to enhance the VCMA coefficient. First, a high dielectric-constant hybrid tunnel barrier is used to increase the VCMA coefficient. Then, by carefully controlling the Mg insertion thickness at the CoFeB/MgO interface, the Fe/O interfacial oxidation condition can be precisely controlled to identify the optimal oxidation condition for large VCMA coefficient. Last, different heavy metal based seed/Mo materials are explored to achieve stable VCMA coefficient, TMR, and perpendicular magnetic anisotropy (PMA) when annealed at temperatures exceeding 400oC, making MeRAM compatible with embedded applications. In addition, we have carefully studied the correlation between atomic elemental distribution and the magnetic properties of these stacks via high resolution transmission electron microscopy (TEM). The insight obtained will provide a critical guidance to future development of both spin-transfer torque and voltage-controlled magnetic memory.
机译:利用自旋来存储信息的磁存储器已经成为下一代非易失性存储器最有希望的候选者之一。利用电压控制磁各向异性(VCMA)效应的磁场隧道结(MTJ)的电场辅助写入为高密度和低功耗存储应用提供了巨大潜力。与传统的利用自旋传递扭矩(STT)或自旋轨道扭矩(SOT)进行磁化切换的电流控制设备相比,这种基于VCMA效应的新兴磁电随机存取存储器(MeRAM)具有较低的开关电流,因此已经进行了研究。将MeRAM集成到用于片上嵌入式应用的高级CMOS后端(BEOL)工艺中,并实现具有低静态功耗和即时操作能力的非易失性电子系统,具有很大的前景。为了充分发挥MeRAM的潜力,至关重要的是设计具有高电压感应写入效率(即VCMA系数)的磁性材料,以在高级节点上实现低写入能量,低写入错误率和高密度MeRAM。论文中,我们将首先讨论MeRAM相对于其他内存技术的优势,重点是阵列级内存性能,系统级3D集成以及高级节点的扩展。然后,我们将介绍VCMA效应的物理原理,绘制出缩小MeRAM时VCMA系数的要求和其他挑战,并讨论后面几章中用来表征VCMA效应的电测量技术。接下来,我们将讨论三种用于提高VCMA系数的实验方法。首先,使用高介电常数混合隧道势垒来增加VCMA系数。然后,通过仔细控制CoFeB / MgO界面处的Mg插入厚度,可以精确地控制Fe / O界面氧化条件,从而确定大VCMA系数的最佳氧化条件。最后,探索了不同的基于重金属的种子/钼材料,以在超过400oC的温度下退火时获得稳定的VCMA系数,TMR和垂直磁各向异性(PMA),从而使MeRAM与嵌入式应用兼容。此外,我们已经通过高分辨率透射电子显微镜(TEM)仔细研究了原子元素分布与这些堆叠的磁性之间的相关性。所获得的见识将为自旋转移扭矩和压控磁存储器的未来发展提供关键指导。

著录项

  • 作者

    Li, Xiang.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Electrical engineering.;Computer engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 196 p.
  • 总页数 196
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号