首页> 外文学位 >Analysis and control of self-assembled heteroepitaxial thin-film surface patterns.
【24h】

Analysis and control of self-assembled heteroepitaxial thin-film surface patterns.

机译:自组装异质外延薄膜表面图案的分析和控制。

获取原文
获取原文并翻译 | 示例

摘要

Thin-films are a broad and important class of materials. Numerous examples of thin-films exist across a wide range of problem domains including bi-metallic catalysts [40, 38], polymer films for catalysis [22], ferroelectric films for piezoelectric sensors and actuators [3], and magnetic films for medical imaging devices [49] and high-density data storage [20, 80].;Thin-films often exhibit some degree of self-assembly, a process that involves a transition from a low-ordered state to a high-ordered state without external stimuli. In thin-films, self-assembly is driven by the interactions between the adsorbate molecules that compose the film. In particular, short-range attractive forces and long-range repulsive forces (e.g., strain induced through a lattice mismatch with the substrate) are necessary to give rise to self-assembly. By manipulating the balance between the intermolecular forces, using process conditions or other external factors, it will be shown that one can drive arbitrary initial patterns toward a target pattern.;A number of challenges must be overcome before one can control thin-film surface morphologies using self-assembly. Specifically, self-assembly of thin-films is an inherently multiscale problem. This means that the actual process of self-assembly occurs at microscopic length and time scales (i.e., nanometers and nanoseconds) while changes to the manipulated variables occur at macroscopic length scales and time scales (i.e., centimeters and seconds). Additionally, self-assembly processes have few manipulated variables while the thin-film surface morphologies are complex and have a large number of degrees of freedom.;The overall aim of this dissertation is to develop the tools and methods necessary to achieve fine-grained control over self-assembled thin-films. In particular, we will develop three classes of tools to perform systems-level analysis of processes involving self-assembly. These tools include sensitivity analysis of stochastic simulations, algorithms for the optimization and design of computationally expensive, stochastic simulations, and methods to calculate reduced representations of two-dimensional surfaces to facilitate control. We will also show the effectiveness of these tools through a case study where we take arbitrary initial surfaces and drive them, using a simple controller, toward an idealized target surface.
机译:薄膜是一类广泛而重要的材料。薄膜的例子很多,涉及范围广泛,包括双金属催化剂[40,38],用于催化的聚合物膜[22],用于压电传感器和执行器的铁电膜[3]以及用于医学成像的磁性膜设备[49]和高密度数据存储[20、80]。薄膜通常表现出一定程度的自组装,该过程涉及从低序状态到高序状态的过渡而没有外部刺激。在薄膜中,自组装是由组成薄膜的被吸附分子之间的相互作用驱动的。特别地,短距离的吸引力和长距离的排斥力(例如​​,由于与衬底的晶格失配所引起的应变)是引起自组装的必要条件。通过使用工艺条件或其他外部因素来操纵分子间力之间的平衡,将显示出人们可以将任意初始图案驱动到目标图案。;在控制薄膜表面形态之前,必须克服许多挑战。使用自组装。具体地说,薄膜的自组装是固有的多尺度问题。这意味着自组装的实际过程发生在微观长度和时标(即纳米和纳秒)上,而操纵变量的变化发生在宏观长度和时标(即厘米和秒)上。此外,自组装过程几乎没有操纵变量,而薄膜表面形态复杂且具有很大的自由度。本论文的总体目标是开发实现细粒度控制所必需的工具和方法。在自组装薄膜上。特别是,我们将开发三类工具,以对涉及自组装的过程进行系统级分析。这些工具包括随机模拟的灵敏度分析,优化和设计计算量大的随机模拟的算法,以及计算二维表面简化表示以方便控制的方法。我们还将通过案例研究来展示这些工具的有效性,在案例研究中,我们采用任意初始曲面,并使用简单的控制器将其驱动朝向理想的目标曲面。

著录项

  • 作者

    McGill, Jacob.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 158 p.
  • 总页数 158
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号