首页> 外文学位 >High energy density, and low loss polymer dielectrics for energy storage capacitors and organic electronics.
【24h】

High energy density, and low loss polymer dielectrics for energy storage capacitors and organic electronics.

机译:高能量密度和低损耗的聚合物电介质,用于储能电容器和有机电子产品。

获取原文
获取原文并翻译 | 示例

摘要

Electrical energy storage devices are among the most important components for a broad range of applications in modern electronics and electrical power systems such as hybrid electric vehicles (HEV), medical defibrillators, filters, and switched-mode power supplies. Due to these applications, electrical energy storage devices have been growing rapidly in recent years. Desired properties of the dielectrics for energy storage include high electric energy density, high charge-discharge efficiency, high electric breakdown, and high operation temperature. Compared with ceramic capacitors, polymer thin film capacitors are inexpensive, possess high dielectric strength, high energy density and low dielectric loss, and fail gracefully. The continuous miniaturization and increased functionality in modern electronics and electric power systems demand further increases in energy and power density of dielectric materials since these capacitors contribute significant (>30%) volume and weight to systems.;One major challenge in developing dielectric polymers is realizing high energy density while maintaining low dielectric loss, even when high electric fields are applied. The traditional dielectric polymers have a relatively low dielectric constant around 2-3, and the energy density is limited to below 5 J/cm3. Recently, PVDF (polyvinylidene uoride) based dielectric polymers such as P(VDF-CTFE) (CTFE: chlorotri uoroethylene) and P(VDF-HFP) (HFP: hexa uoropropylene) have been studied and demonstrated to achieve very high energy densities (>25 J/cm3). Unfortunately, it is still a challenge to reduce the ferroelectric loss in PVDF based polymers by the strongly coupled dipoles and the high electric field conduction loss.;Two approaches are introduced in this dissertation on how to develop the next generation polymer dielectrics with high energy density, low loss, high breakdown strength, and high temperature stability. The first approach is modification of high K polymer dielectrics to reduce the ferroelectric loss and conduction loss. The second approach is start from intrinsically low loss materials, then enhance the dielectric properties by increasing the dipole moment and dipole density.;A polar- uoropolymer blend consisting of a high energy density P(VDF-CTFE) and a low dielectric loss poly(ethylene-chlorotri uoroethylene) (ECTFE) was developed. Both the blend and crosslinked blend films exhibit a dielectric constant of 7 and low loss (1%), as expected from the classical composite theory. Moreover, introducing crosslinking can lead to a marked reduction of losses in blend films at high electric fields while maintaining a high energy density. At 250 MV/m, a loss of 3% can be achieved in the crosslinked blend compared with 7% loss in pure blend, which is already much below that of pure P(VDF-CTFE) (35%). Furthermore, uniaxially stretch can improve the dielectric breakdown strength and mechanical properties.;The promise of aromatic, amorphous, and polar polymers containing high dipolar moments with very low defect levels is demonstrated for future dielectric materials with ultrahigh electric-energy density, low loss at high applied fields, and ultrahigh breakdown strengths. Specifically, an amorphous, polar, and glass-phase dielectric polymer aromatic polythiourea (ArPTU) features extremely high dielectric breakdown strength (>1.1 GV/m), low loss at high electric fields (10% at 1.1 GV/m), and a high maximum electrical energy density (>24 J/cm3). This dissertation presents a study of the structure-property relationships and electrical properties study in ArPTU, and offers a phenomenological explanation for the experimentally observed high-field loss characteristics which facilitate the excellent energy storage properties.;Besides the aromatic polythiourea, meta-aromatic polyurea (meta-PU) was developed and investigated for energy storage capacitors. Modifications to the molecular structure can tune the dipolar density and dipole moment in the polyurea systems to improve the dielectric properties. The meta-PU has an enhanced dielectric constant from the higher volume dipolar density, higher energy density, and a high electrical breakdown. A high storage electrical energy density of 13 J/cm3 with energy storage efficiency of 91% can be achieved at 670 MV/m electric field. Other polyureas, polythioureas based dielectrics with tunable dielectric properties are also summarized.;Polymer dielectrics possessing high dielectric constant, low loss are not only of great importance for energy storage capacitors, but also attractive as gate dielectrics in organic thin film field effect transistors (OTFTs). In this work, solution processable PVDF based polymers, with tunable dielectric constant from 7 to more than 50 as well as ferroelectricity, were used as the gate insulator in bottom gated OTFTs with a pentacene semiconductor layer. Due to the high dielectric constant of P(VDF-TrFE-CFE), a large capacitive coupling between the gate and channel can be achieved which causes a high charge concentration at the interface of the semiconductor and dielectric layers. In devices with the P(VDF-TrFE-CFE) dielectric layer, high performances and a low minimum operation gate voltage (5-10 V) were attained. Also, the ferroelectric thin film transistor with the P(VDF-TrFE) dielectric has a high remnant polarization, which is desired for memory applications.
机译:电能存储设备是现代电子和电力系统(例如混合动力汽车(HEV),医疗除纤颤器,滤波器和开关模式电源)中广泛应用的最重要组件之一。由于这些应用,近年来,电能存储设备已经快速增长。用于能量存储的电介质的期望特性包括高电能密度,高充放电效率,高电击穿和高操作温度。与陶瓷电容器相比,聚合物薄膜电容器价格便宜,具有较高的介电强度,较高的能量密度和较低的介电损耗,并且可以正常出现故障。在现代电子和电力系统中,持续的小型化和功能的增强要求介电材料的能量和功率密度进一步提高,因为这些电容器为系统贡献了显着的(> 30%)体积和重量。;开发介电聚合物的一个主要挑战是实现即使在施加高电场的情况下,也能在保持低介电损耗的同时实现高能量密度。传统的介电聚合物的介电常数较低,约为2-3,并且能量密度限制在5 J / cm3以下。最近,已经研究了基于PVDF(聚偏二氟乙烯)的介电聚合物,例如P(VDF-CTFE)(CTFE:三氟氯乙烯)和P(VDF-HFP)(HFP:六氟丙烯),并获得了很高的能量密度(> 25 J / cm3)。不幸的是,通过强耦合偶极子和高电场传导损耗来降低PVDF基聚合物的铁电损耗仍然是一个挑战。本论文介绍了两种方法来研究如何开发具有高能量密度的下一代聚合物电介质,低损耗,高击穿强度和高温稳定性。第一种方法是修改高K聚合物电介质,以减少铁电损耗和传导损耗。第二种方法是从本质上是低损耗的材料开始,然后通过增加偶极矩和偶极密度来增强介电性能。含高能量密度P(VDF-CTFE)和低介电损耗的聚(-)氟聚合物乙烯-氯三氟乙烯(ECTFE)的开发。正如经典复合理论所预期的那样,共混和交联共混膜均显示介电常数为7,损耗低(1%)。而且,引入交联可以在保持高能量密度的同时显着减少高电场下共混膜中的损耗。在250 MV / m下,交联共混物的损失为3%,而纯共混物的损失为7%,这已经远远低于纯P(VDF-CTFE)(35%)的损失。此外,单轴拉伸可以改善介电击穿强度和机械性能。未来的具有超高电能密度,低损耗的介电材料证明了含有高偶极矩,缺陷水平非常低的芳族,无定形和极性聚合物的前景高应用领域和超高击穿强度。具体而言,无定形,极性和玻璃相介电聚合物芳族聚硫脲(ArPTU)具有极高的介电击穿强度(> 1.1 GV / m),高电场下的低损耗(1.1 GV / m为10%)和最大电能密度高(> 24 J / cm3)。本论文对ArPTU的结构-性质关系和电学性质进行了研究,并为实验观察到的高场损耗特性提供了现象学解释,有利于优异的储能性能。除了芳族聚硫脲外,间芳族聚脲也是如此。 (meta-PU)被开发和研究用于储能电容器。分子结构的修饰可以调节聚脲体系中的偶极密度和偶极矩,从而改善介电性能。由于较高的体积偶极密度,较高的能量密度和较高的电击穿性能,因此meta-PU具有增强的介电常数。在670 MV / m的电场下,可以实现13 J / cm3的高存储电能密度和91%的能量存储效率。具有可调节介电特性的其他聚脲,基于聚硫脲的介电材料也得到了总结。具有高介电常数,低损耗的聚合物介电不仅对于储能电容器非常重要,而且作为有机薄膜场效应晶体管(OTFT)的栅极介电材料也具有吸引力)。在这项工作中,具有并电常数从7到大于50以及铁电性的可溶液加工的PVDF基聚合物被用作具有并五苯半导体层的底部栅极OTFT中的栅极绝缘体。由于P(VDF-TrFE-CFE)的高介电常数因此,可以实现栅极与沟道之间的大电容耦合,从而在半导体和介电层的界面处引起高电荷浓度。在具有P(VDF-TrFE-CFE)介电层的设备中,可以获得高性能和较低的最小工作栅极电压(5-10 V)。而且,具有P(VDF-TrFE)电介质的铁电薄膜晶体管具有高的剩余极化,这对于存储器应用是期望的。

著录项

  • 作者

    Wu, Shan.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号