首页> 外文学位 >Towards Stronger Coulomb Coupling in an Ultracold Neutral Plasma.
【24h】

Towards Stronger Coulomb Coupling in an Ultracold Neutral Plasma.

机译:在超冷的中性等离子体中实现更强的库仑耦合。

获取原文
获取原文并翻译 | 示例

摘要

Ultracold neutral plasmas are created by photoionizing laser-cooled atoms in a magneto-optical trap (MOT). Due to their large electrical potential energies and comparatively small kinetic energies, ultracold plasmas fall into a regime of plasma systems which are called "strongly coupled." A priority in the field of ultracold plasmas is to generate plasmas with higher values of the strong coupling parameter Gamma, which is given as the ratio of the nearest-neighbor Coulomb potential energy to the average kinetic energy. The equilibrium strong coupling in ultracold plasmas is limited by the ultrafast relaxation of the ions due to spatial disorder in the initial system. This heating mechanism is called "disorder-induced heating" (DIH) and it limits the ion strong coupling in ultracold plasmas to order unity. This thesis describes experiments that explore ways to generate higher values of the strong coupling parameter in an ultracold neutral calcium plasma.;One way to increase Gamma is to mitigate the effects of DIH using electron screening. This thesis describes an experiment in which the initial electron temperature was systematically changed to determine the effect that electron screening has on the ion thermalization. At lower initial electron temperatures, corresponding to a higher degree of electron shielding, it was found that the screening slows the ion thermalization and reduces the equilibrium ion temperature by as much as a factor of two. However, electron screening also reduces the ion interaction strength by the same amount, which has the net effect of leaving the effective Gamma unchanged.;Another method for increasing the strong coupling of an ultracold plasma is to excite the plasma ions to a higher ionization state. Simulations predict that doubly ionizing the plasma ions can increase the strong coupling in an ultracold plasma by as much as a factor of 4, with the maximum value of Gamma depending on the timing of the second ionization relative to the DIH process. This thesis describes an experiment designed to test these predictions in a Ca2+ plasma. Measurements of the change in the Ca + ion temperature as a function of the timing of the second ionization pulses were made using laser-induced fluorescence. Results of these measurements show that the heating of the Ca+ ions due to the second ionization depends on the timing of the second ionization pulses, as predicted by MD simulations.;Keywords: ultracold plasma, atomic physics, plasma physics, laser cooling, strong coupling.
机译:超冷中性等离子体是通过在磁光阱(MOT)中对激光冷却的原子进行光电离而产生的。由于它们的大的势能和比较小的动能,超冷等离子体落入被称为“强耦合”的等离子体系统的状态中。在超冷等离子体领域中的优先事项是生成具有较高耦合参数Gamma值的等离子体,该强度以最近邻库仑势能与平均动能之比的形式给出。由于初始系统中的空间无序,离子的超快速弛豫限制了超冷等离子体中的平衡强耦合。这种加热机制称为“无序诱导加热”(DIH),它将超冷等离子体中的离子强耦合限制为有序统一。本文描述了探索探索在超冷的中性钙等离子体中产生更高耦合强度参数值的方法的实验。增加γ的一种方法是使用电子筛选减轻DIH的影响。本文描述了一个实验,其中系统地改变了初始电子温度,以确定电子筛选对离子热化的影响。发现在较低的初始电子温度下,对应于较高的电子屏蔽程度,发现该筛选减慢了离子热化并使平衡离子温度降低了两倍。然而,电子筛选还会使离子相互作用强度降低相同的数量,从而产生使有效伽玛保持不变的净效果。增加超冷等离子体强耦合的另一种方法是将等离子体离子激发到更高的电离态。模拟预测,双离子化等离子体离子可将超冷等离子体中的强耦合提高多达4倍,其中Gamma的最大值取决于相对于DIH过程的第二次电离的时间。本论文描述了一个旨在在Ca2 +血浆中测试这些预测的实验。使用激光诱导的荧光测量Ca +离子温度随第二次电离脉冲时间的变化。这些测量结果表明,第二次电离引起的Ca +离子的加热取决于第二次电离脉冲的时间,如MD模拟所预测。关键词:超冷等离子体原子物理学等离子体物理学激光冷却强耦合。

著录项

  • 作者

    Lyon, Mary E.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Atomic physics.;Plasma physics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号