首页> 外文学位 >Nonlinear Optical Phenomena in Emerging Low-Dimensional Materials
【24h】

Nonlinear Optical Phenomena in Emerging Low-Dimensional Materials

机译:新兴的低维材料中的非线性光学现象

获取原文
获取原文并翻译 | 示例

摘要

As digital information technologies continue to evolve at much faster rates than the growth of Si-based processors, the encroachment of light-based technologies into computing seems inevitable. With the advent of lasers, photonic crystals, and optical diodes, photonic computing has made significant strides in information technology over the past 30 years. This continuing integration of light into all-optical computing, optoelectronic components, and emerging optogenetic technologies demands the ability to control and manipulate light in a predictable fashion, or by design. Of particular interest, is the passive control and manipulation of light in all-optical switches, photonic diodes, and optical limiting which can be achieved by leveraging intrinsic non-linear optical properties of low dimensional materials.;The reverse saturable absorption in fullerenes has been widely used to realize excellent passive optical limiters for the visible region up to 650 nm. However, there is still a need for passive optical switches and limiters with a low limiting threshold (< 0.5 J/cm2) and higher damage limits. The electronic structure of fullerenes can be modified either through doping or by the encapsulation of endohedral clusters to achieve exotic quantum states of matter such as superconductivity. Building on this ability, we discuss in Chapter 2 that the encapsulation of Sc3N, Lu3N or Y3N in C80 alters the HOMO-LUMO gap and leads to passive optical switches with a significantly low limiting threshold (0.3 J/cm 2) and a wider operation window (average pulse energy > 0.3 mJ in the ns regime).;In addition to extraordinary and strongly anisotropic electronic properties, two dimensional (2D) materials such as graphene and boron nitride, exhibit strong light-matter interactions despite their atomic thickness. The nonlinear light-matter interactions in 2D materials are well suited for several applications in photonics and optoelectronics, such as ultrafast optical switching and optical diodes. Unlike most 2D materials that display nonlinear saturable absorption or increased light transmission at higher fluences, hexagonal boron nitride nanoplatelets (BNNPs) exhibit enhanced opaqueness with increasing light fluence. A two photon absorption (2PA) process was previously proposed to explain the intrinsic non-linear absorption in BNNPs at 1064 nm or 1.16 eV (Kumbhakar et al., Advanced Optical Materials, vol. 3, pp. 828, 2015); which is counter-intuitive because a 2PA process at 1.16 eV cannot excite electrons across the wide band gap of BNNPs (~5.75 eV). Here, through a systematic study of the non-linear properties of BNNPs we uncover a notoriously rare non-linear phenomenon, viz., five-photon absorption (5PA) at 1064 nm for low laser input fluences (below 0.6 J/cm 2) that irreversibly transforms to a 2PA for higher laser input fluences (above 0.6 J/cm2). Our detailed experimental and theoretical findings delineated in Chapter 3 provide compelling evidence that the high laser fluence generates defects in BNNPs (e.g., oxygen/carbon doping), which support a 2PA process by inducing new electronic states within the wide band gap of BNNPs.;MXenes comprise a new class of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides that exhibit unique light-matter interactions. Recently, 2D Ti3CNTx (Tx represents functional groups such as --OH and --F) was found to exhibit nonlinear saturable absorption (SA) or increased transmittance at higher light fluences that is useful for mode locking in fiber-based femtosecond lasers. However, the fundamental origin and thickness-dependence of SA behavior in MXenes remains to be understood. We fabricated 2D Ti3C2Tx thin films of different thicknesses using an interfacial film formation technique to systematically study their nonlinear optical properties. Using the open aperture Z-scan method, we find that the SA behavior in Ti3C2Tx MXene arises from plasmon-induced increase in the ground state absorption at photon energies above the threshold for free carrier oscillations. The saturation fluence and modulation depth of Ti3C2Tx MXene was observed to be dependent on the film thickness. Unlike other 2D materials, Ti3C2Tx was found to show higher threshold for light-induced damage with up to 50% increase in nonlinear transmittance. Lastly, building on the SA behavior of Ti3C2Tx MXenes, we demonstrate in Chapter 4 a Ti3C2T x MXene-based photonic diode that breaks time-reversal symmetry to achieve non-reciprocal transmission of nanosecond laser pulses. Finally, in Chapter 5, we discuss the equilibrium and non-equilibrium free carrier dynamics in a 16 nm thick Ti3C2Tx film. (Abstract shortened by ProQuest.).
机译:随着数字信息技术以比基于Si的处理器的增长速度快得多的速度发展,将基于光的技术入侵计算机似乎是不可避免的。随着激光,光子晶体和光学二极管的出现,在过去30年中,光子计算在信息技术方面取得了长足的进步。将光持续集成到全光计算,光电组件和新兴的光遗传学技术中,要求能够以可预测的方式或通过设计来控制和操纵光。特别令人感兴趣的是全光开关,光子二极管中的光的无源控制和操纵以及光学限制,这可以通过利用低维材料的固有非线性光学特性来实现。富勒烯中的反向饱和吸收一直是广泛用于在650 nm可见光区域实现出色的无源光学限制器。然而,仍然需要具有低极限阈值(<0.5 J / cm2)和更高的损伤极限的无源光开关和限制器。富勒烯的电子结构可以通过掺杂或通过内衬簇的包封进行修饰,以实现物质的外来量子态,例如超导性。基于这种能力,我们将在第2章中讨论在C80中封装Sc3N,Lu3N或Y3N会改变HOMO-LUMO间隙,并导致无源光开关的极限阈值(0.3 J / cm 2)非常低,并且工作范围更广窗口(在ns范围内平均脉冲能量> 0.3 mJ).;除了非凡且强烈的各向异性电子特性外,二维(2D)材料(例如石墨烯和氮化硼)尽管原子厚度大,但仍表现出强烈的光-质相互作用。 2D材料中的非线性光-物质相互作用非常适合光子学和光电学中的多种应用,例如超快光学开关和光电二极管。与大多数2D材料在较高的注量下显示出非线性的饱和吸收或增加的光透射率不同,六方氮化硼纳米片(BNNP)随着光注量的增加而显示出增强的不透明性。先前提出了两光子吸收(2PA)工艺来解释BNNP在1064 nm或1.16 eV时固有的非线性吸收(Kumbhakar等人,Advanced Optical Materials,第3卷,828页,2015);这是违反直觉的,因为在1.16 eV的2PA过程无法在BNNP的宽带隙(〜5.75 eV)上激发电子。在这里,通过对BNNP非线性特性的系统研究,我们发现了一个众所周知的罕见非线性现象,即低激光输入通量(低于0.6 J / cm 2)在1064 nm处的五光子吸收(5PA)。对于更高的激光输入通量(0.6 J / cm2以上),不可逆地转换为2PA。我们在第3章中描述的详细的实验和理论发现提供了令人信服的证据,即高激光通量会在BNNPs中产生缺陷(例如,氧/碳掺杂),从而通过在BNNPs的宽带隙内诱导新的电子态来支持2PA工艺。 MXene包括一类新型的二维(2D)过渡金属碳化物,氮化物和碳氮化物,它们表现出独特的光-质相互作用。最近,发现2D Ti3CNTx(Tx代表诸如--OH和-F之类的官能团)在更高的光通量下表现出非线性的可饱和吸收(SA)或增加的透射率,这对于基于光纤的飞秒激光器的锁模很有用。然而,MXenes中SA行为的基本起源和厚度依赖性尚待了解。我们使用界面成膜技术制造了不同厚度的二维Ti3C2Tx薄膜,以系统地研究其非线性光学性能。使用开孔Z扫描方法,我们发现Ti3C2Tx MXene中的SA行为起因于在自由载流子振荡阈值以上的光子能量下,等离子体激元引起的基态吸收增加。观察到Ti3C2Tx MXene的饱和通量和调制深度取决于薄膜厚度。与其他2D材料不同,发现Ti3C2Tx表现出更高的光致损伤阈值,非线性透射率提高了50%。最后,基于Ti3C2Tx MXene的SA行为,我们在第4章中演示了基于Ti3C2T x MXene的光子二极管,该二极管打破了时间反转对称性,实现了纳秒级激光脉冲的不可逆传输。最后,在第5章中,我们讨论了16 nm厚Ti3C2Tx薄膜中的平衡和非平衡自由载流子动力学。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Dong, Yongchang.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Physics.;Optics.;Materials science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号