首页> 外文学位 >Structural, Thermodynamic, and Electronic Properties of Mixed Ionic/Electronic Conductor Materials
【24h】

Structural, Thermodynamic, and Electronic Properties of Mixed Ionic/Electronic Conductor Materials

机译:离子/电子混合导体材料的结构,热力学和电子性质

获取原文
获取原文并翻译 | 示例

摘要

Due to the mainstream CMOS technology facing a rapid approach to the fundamental downscaling limit, beyond CMOS technologies are under active investigation and development with the intention of revolutionizing and sustaining a wide range of applications including sensors, cryptography, neuromorphic and quantum computing, memory, and logic, among others. Resistive switching electronics, for example, are devices that can change their electrical resistance with an applied external field. Despite their simple metal-insulator-metal structure, resistive switching devices exhibit an intricate set of IV characteristics based on the chemical composition of the solid electrolyte that ranges from non-volatile bipolar and non-polar switching to volatile threshold switching (abrupt but reversible change in resistance). This rich variety of electrical responses offer new alternatives to traditional CMOS applications in the areas of RF-signal switching, relaxation oscillators, over-voltage protection, and notably, memory cells and two-terminal non-linear selector devices.;The Cu/a-SiO2 system is a promising candidate for resistive switching memory applications. The conduction mechanism in the low-resistance state is known to be filamentary, that is, a physical metallic filament bridges between the metallic electrodes through the amorphous silica. However, many fundamental materials processes that would aid the design and optimization of this devices, such the shape and size of stable metallic filaments, remain unknown. In the first part of this work, the morphology and diffusion of small copper clusters embedded in amorphous silicon dioxide were characterized by density functional theory calculations. The average formation energy of a single copper ion in the amorphous matrix is found to be 2.4 eV, about 50% lower than in the case of silicon dioxide in its cristobalite or quartz phases. The theoretical predictions show that copper clusters with an equiaxed morphology are always energetically favorable relative to the dissolved copper ions in a-SiO2; hence, stable clusters do not exhibit a critical size. The stochasticity in the atomistic structure of the amorphous silicon dioxide leads to a broad distribution activation energies for diffusion of copper in the matrix, ranging from 0.4 to 1.1 eV.;Since ab initio molecular dynamics are prohibitively expensive to simulate the switching process in Cu/a-SiO 2 electrochemical metallization cells, a multi-scale simulation approach based on electrochemical dynamics with implicit degrees of freedom and density functional theory was developed to study the electronic evolution during metallic filament formation cells. These simulations suggest that the electronic transport in the low-resistance configuration is attributed to copper derived states belonging to the filament bridging between electrodes. Interestingly, the participation of states derived from intrinsic defects in the amorphous SiO 2 around the Fermi energy are negligible and do not contribute to conduction.;Unlike the Cu/a-SiO2 system which only exhibits filamentary switching, copper-doped germanium-based glassy chalcogenides show filamentary or threshold type of conduction depending on the chemical composition of the glass and copper concentration. Ab initio molecular dynamics based on density functional theory is used to understand the atomistic origin of the electronic transport in these materials. The theoretical predictions show that glasses containing tellurium tend to favor the formation of copper clusters; hence, these materials exhibit filamentary conduction. Threshold conduction is predicted to be the transport mechanism for glassy sulfides and selenides due to the ability of copper to remain dissolved in the amorphous matrix even at high metal concentration. Furthermore, the charge carrier transport in sulfur and selenium glasses was found to be assisted by defective states derived from chalcogen atoms whose bonds exhibit a polar character.;Finally, taking advantage of the van der Waals gap as intercalation sites and crystal order in molybdenum disulfide, a novel mixed ionic-electronic conductor material based on copper and silver intercalation of MoS2 is proposed. The theoretical predictions show that on average, the intercalation energy of copper into MoS2 is 1 eV, while intercalation of silver shows a strong dependence on concentration ranging from 2.2 to 0.75 eV for low and high concentrations, respectively. The activation energy for diffusion of copper and silver intercalated within the van der Waals gap of MoS 2 is predicted to be 0.32 and 0.38 eV, respectively, comparable to other superionic conductors. Upon Cu and Ag intercalation, MoS2 undergoes a semiconductor-to-metal transition, where the in-plane and out-of-plane conductances are comparable and exhibit a linear dependence with metal concentration. (Abstract shortened by ProQuest.).
机译:由于主流CMOS技术正面临着快速解决基本尺寸下限的问题,目前正在积极研究和开发超越CMOS技术的产品,以彻底革新和维持广泛的应用,包括传感器,密码学,神经形态和量子计算,内存和逻辑等等。例如,电阻开关电子器件是可以通过施加的外部电场来改变其电阻的设备。尽管电阻开关器件具有简单的金属-绝缘体-金属结构,但它们基于固体电解质的化学成分表现出复杂的IV特性集,其化学组成范围从非易失性双极性和非极性切换到挥发性阈值切换(突然但可逆的变化)抵抗)。丰富的电响应特性为RF信号切换,张弛振荡器,过压保护(尤其是存储单元和两端非线性选择器)领域中的传统CMOS应用提供了新的替代方案。 -SiO 2系统是电阻开关存储器应用的有希望的候选者。已知低电阻状态下的导电机制是丝状的,即,物理金属丝通过无定形二氧化硅在金属电极之间桥接。但是,尚无许多有助于该器件设计和优化的基本材料工艺,例如稳定金属丝的形状和尺寸。在这项工作的第一部分中,通过密度泛函理论计算来表征嵌入无定形二氧化硅中的小铜团簇的形态和扩散。发现非晶态基质中单个铜离子的平均形成能为2.4 eV,比方英石或石英相的二氧化硅低约50%。理论预测表明,相对于α-SiO2中溶解的铜离子,具有等轴形态的铜簇总是在能量上有利。因此,稳定的簇不会显示出临界大小。无定形二氧化硅原子结构的随机性导致铜在基体中扩散的分布活化能范围广,范围从0.4到1.1 eV .;因为从头算分子动力学来模拟Cu / a-SiO 2电化学金属化电池,基于隐含的自由度和密度泛函理论的电化学动力学的多尺度模拟方法被开发来研究金属丝形成电池期间的电子演化。这些模拟表明,低电阻配置中的电子传输归因于属于电极之间灯丝桥接的铜衍生态。有趣的是,源自费米能量周围非晶SiO 2中固有缺陷的态的参与可忽略不计,并且对导电没有贡献。与仅表现出丝状转换的Cu / a-SiO 2系统不同,掺杂铜的锗基玻璃态硫属化物根据玻璃的化学成分和铜浓度显示出丝状或阈值导电类型。基于密度泛函理论的从头算分子动力学被用来理解这些材料中电子传输的原子起源。理论预测表明,含碲的玻璃倾向于促进铜团簇的形成。因此,这些材料表现出丝状传导。由于铜即使在高金属浓度下仍能保持溶解在非晶态基质中,因此预测阈值导电是玻璃态硫化物和硒化物的传输机制。此外,还发现硫和硒玻璃中的载流子传输是由硫族原子衍生的缺陷态(其键具有极性特征)协助进行的。最后,利用范德华间隙作为二硫化钼的嵌入位点和晶体顺序提出了一种基于MoS2的铜和银插层的新型混合离子电子导体材料。理论预测表明,平均而言,铜在MoS2中的插层能量为1 eV,而银的插层对低浓度和高浓度分别强烈依赖于2.2至0.75 eV的浓度。与其他超离子导体相比,MoS 2的范德华间隙内插入的铜和银扩散的活化能预计分别为0.32和0.38 eV。在Cu和Ag插入后,MoS2经历了半导体到金属的转变,其中面内和面外电导相当,并且与金属浓度呈线性关系。 (摘要由ProQuest缩短。)。

著录项

  • 作者

    Guzman, David M.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Materials science.;Condensed matter physics.;Computational physics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号