首页> 外文学位 >Pressure Effects on Low-Liquid Loading Two-Phase Flow in Near-Horizontal Upward Inclined Pipes
【24h】

Pressure Effects on Low-Liquid Loading Two-Phase Flow in Near-Horizontal Upward Inclined Pipes

机译:压力对近水平向上倾斜管道中低液体载荷两相流的影响

获取原文
获取原文并翻译 | 示例

摘要

The present work presents experimental and modeling studies of low liquid loading gas-liquid flow in slightly upward inclined pipes with relatively large diameter and high system pressure. These conditions are common in wet gas transport pipelines in oil and gas systems. Earlier studies were conducted at lower pressures and/or smaller diameter pipes.;Experimental results were obtained for an 85 m long, 0.155 m ID upward inclined pipe at an angle of 2º from horizontal. The flowing fluids are Isopar L as the liquid phase and Nitrogen as the gas phase. System pressures of 1.48, 2.18 and 2.86 MPa were considered resulting in gas densities of 17, 23 and 32 kg/m3, respectively. Superficial liquid velocities varied from 0.01 to 0.05 m/s, while superficial gas velocities varied from 1.5 to 16 m/s. Observed flow patterns were pseudo-slugs, stratified and annular. Pressure gradient, liquid holdup, entrainment flux and entrainment fraction were measured. A wire-mesh sensor was used to obtain the liquid and gas geometric distribution in the pipe cross-sectional area over time, as well as interfacial wave celerity, pseudo-slug translational velocity and interfacial roughness. Capacitance probes distributed along the test section were used to obtain pseudo-slug frequency and translational velocity at different locations through the pipe. Flow was visualized with both high-speed and high-resolution cameras.;This study presents a new model for pressure gradient calculations at the stratified-annular pattern transition region. The model considers the fact that the interface shape is flat for larger diameter pipes. A thin liquid film is formed at the gas-wall interface due to the entrained droplets deposition. This thin liquid film is responsible for an increased gas-wall friction factor. The friction factor is modeled based on a liquid mass balance at a pipe cross-sectional area, where atomization and deposition of liquid droplets occur, as well as liquid drainage through the pipe walls. Based on interfacial roughness measurement from this and past studies, the interfacial friction factor is assumed as a constant value. The rate of atomization equation is modified to better describe entrainment data obtained at high pressure systems. Final model shows a fair prediction with the acquired and literature data.
机译:本工作介绍了具有较大直径和较高系统压力的,略微向上倾斜的管道中低液体负载气液流的实验和模型研究。这些条件在油气系统的湿气输送管道中很常见。较早的研究是在较低压力和/或较小直径的管道上进行的。实验结果是,一条长85 m,内径为0.155 m的向上倾斜的管道与水平方向成2º角。流动的流体是作为液相的Isopar L和作为气相的氮气。认为系统压力为1.48、2.18和2.86 MPa,气体密度分别为17、23和32 kg / m3。表观液体速度在0.01至0.05m / s之间变化,而表观气体速度在1.5至16m / s之间变化。观察到的流型为假团状,分层和环形。测量压力梯度,液体滞留率,夹带通量和夹带分数。线网传感器用于获得管道横截面积随时间变化的液体和气体几何分布,以及界面波速度,拟弹头平移速度和界面粗糙度。沿测试部分分布的电容探头用于获得通过管道的不同位置的假弹头频率和平移速度。使用高速和高分辨率摄像机可视化流动。本研究提出了一种用于分层-环形模式过渡区域的压力梯度计算的新模型。该模型考虑了以下事实:较大直径管道的界面形状是平坦的。由于夹带的液滴沉积,在气体-壁界面处形成薄的液体膜。这种薄的液膜导致增加的气壁摩擦系数。摩擦系数基于管道横截面处的液体质量平衡进行建模,在管道横截面处会发生液滴的雾化和沉积,以及通过管道壁的液体排出。基于本次和以往研究的界面粗糙度测量结果,界面摩擦系数被假定为恒定值。修改了雾化率方程,以更好地描述在高压系统中获得的夹带数据。最终模型使用获得的数据和文献数据显示出合理的预测。

著录项

  • 作者

    Rodrigues, Hendy Tisserant.;

  • 作者单位

    The University of Tulsa.;

  • 授予单位 The University of Tulsa.;
  • 学科 Petroleum engineering.;Fluid mechanics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号