首页> 外文学位 >Optimal Force Generation with Fluid-Structure Interactions.
【24h】

Optimal Force Generation with Fluid-Structure Interactions.

机译:通过流体-结构相互作用产生最佳力。

获取原文
获取原文并翻译 | 示例

摘要

Typical computational and experimental methods are unsuitable for studying large scale optimization problems involving complex fluid structure interactions, primarily due to their time-consuming nature. A novel experimental approach is proposed here that provides a high-fidelity and efficient alternative to discover optimal parameters arising from the passive interaction between structural elasticity and fluid dynamic forces. This approach utilizes motors, force transducers, and active controllers to emulate the effects of elasticity, eliminating the physical need to replace structural components in the experiment. A clustering genetic algorithm is then used to tune the structural parameters to achieve desired optimality conditions, resulting in approximated global optimal regions within the search bound.;A prototype fluid-structure interaction experiment inspired by the lift generation of flapping wing insects is presented to highlight the capabilities of this approach. The experiment aims to maximize the average lift on a sinusoidally translating plate, by optimizing the damping ratio and natural frequency of the plate's elastic pitching dynamics. Reynolds number, chord length, and stroke length are varied between optimizations to explore their relationships to the optimal structural parameters. The results reveal that only limited ranges of stroke lengths are conducive to lift generation; there also exists consistent trends between optimal stroke length, natural frequency, and damping ratio. The measured lift, pitching angle, and torque on the plate for optimal scenarios exhibit the same frequency as the translation frequency, and the phase angles of the optimal structural parameters at this frequency are found to be independent of the stroke length. This critical phase can be then characterized by a linear function of the chord length and Reynolds number. Particle image velocimetry measurements are acquired for the kinematics generated with optimal and suboptimal structural parameters. By examining the vorticity field and the measured lift, leading edge vortices and added mass are identified as primary lift generation mechanisms under optimality. This is similar to the unsteady lift generating mechanism employed by flapping wing insects. Further analysis reveals that longer stroke lengths rely mainly on vortex formation to maximize average lift, whereas added-mass effects / wing wake interaction become more prominent at shorter stroke lengths.
机译:主要由于其耗时的性质,典型的计算和实验方法不适合研究涉及复杂流体结构相互作用的大规模优化问题。这里提出了一种新颖的实验方法,该方法提供了一种高保真且有效的替代方法,以发现由结构弹性和流体动力之间的被动相互作用引起的最佳参数。这种方法利用电机,力传感器和主动控制器来模拟弹性的影响,从而消除了在实验中更换结构部件的物理需求。然后使用聚类遗传算法对结构参数进行调整,以达到所需的最佳条件,从而在搜索范围内获得近似的全局最佳区域。;提出了受拍打翼昆虫升举启发的原型流体-结构相互作用实验,以突出显示这种方法的功能。该实验旨在通过优化阻尼系数和弹性弹性俯仰动力学的固有频率来最大化正弦平移板上的平均升力。雷诺数,弦长和冲程长度在优化之间有所不同,以探索它们与最佳结构参数的关系。结果表明,只有有限的行程长度范围才有助于产生升力。在最佳行程长度,固有频率和阻尼比之间也存在一致的趋势。对于最佳方案,在板上测得的升力,俯仰角和扭矩显示出与平移频率相同的频率,并且发现在该频率下最佳结构参数的相角与行程长度无关。然后可以通过弦长和雷诺数的线性函数来表征该关键相位。对于使用最佳和次佳结构参数生成的运动学,将获取粒子图像测速测量结果。通过检查涡度场和测得的升力,可以确定前沿涡旋和附加质量是最优状态下的主要升力产生机理。这类似于扑翼昆虫使用的不稳定升力产生机制。进一步的分析表明,更长的冲程长度主要依赖于涡流的形成来最大化平均升力,而附加质量效应/机翼尾翼相互作用在较短的冲程长度下变得更加突出。

著录项

  • 作者

    Peng, Diing-wen.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Mechanical.;Engineering General.;Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 111 p.
  • 总页数 111
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号