首页> 外文学位 >Phase Transformation in Monolayer Molybdenum Disulphide (MoS2) with and without Defects under Tension Predicted by Atomistic Simulations.
【24h】

Phase Transformation in Monolayer Molybdenum Disulphide (MoS2) with and without Defects under Tension Predicted by Atomistic Simulations.

机译:原子模拟预测的拉伸下有无缺陷的单层二硫化钼(MoS2)的相变。

获取原文
获取原文并翻译 | 示例

摘要

In addition to its use as a solid lubricant, molybdenum disulphide (MoS 2) has gained recent attention as a possible substitute for silicon as it is increasingly difficult to keep shrinking down electronic devices made of silicon, the conventional electronic material. When thinned down to atomic thickness, monolayer MoS2 possesses very unique and promising electronic and electrical properties. Unlike electronic and electrical properties, knowledge of the mechanical properties and role of structural defects on these properties of monolayer MoS2 is unexplored. For this thesis, the two main objectives are (1) to gain insight about the failure mechanism of monolayer MoS2 by modeling nanoindentation performed on suspended free standing membrane with comparison to experiment and (2) to explore the influence of structural defects on the mechanical properties of monolayer MoS2 by modelling monolayer MoS2 membranes with defects and simulating the same nanoindentation process as in part (1). It is shown that the force required for fracture of the MoS2 monolayer increases with increasing indenter diameter. This relationship and the magnitudes of the breaking forces computed in this work are consistent with experiments presented in the literature. A phase transformation, caused by an abrupt drop in the S-S intralayer Z dimension, is observed prior to failure during both defect-free and defect-containing membrane simulations. This phase transformation is also observed in uniaxial tension simulations. Analysis suggests that structural defects alter the failure mechanisms of monolayer MoS2 and thus reduce its mechanical performance. For point defects, the phase transformation initiates from accumulated vacancies away from the center of the membrane and accelerates the new phase propagation process. For grain boundary structures, it was found that their fracture strength is independent of the grain boundary energy.
机译:除了用作固体润滑剂之外,二硫化钼(MoS 2)作为硅的一种可能的替代品最近也受到关注,因为越来越难以保持由常规电子材料硅制成的电子设备的尺寸。当减薄至原子厚度时,单层MoS2具有非常独特且很有前途的电子和电气性能。与电子和电学性质不同,尚未探索有关机械性质以及结构缺陷对单层MoS2的这些性质的作用的知识。为此,本文的两个主要目标是(1)通过对在悬置的独立式膜上进行的纳米压痕建模并与实验进行比较来了解单层MoS2的破坏机理,以及(2)探索结构缺陷对力学性能的影响通过建模具有缺陷的单层MoS2膜并模拟与(1)部分相同的纳米压痕过程,对单层MoS2进行分析。结果表明,MoS2单层断裂所需的力随压头直径的增加而增加。在这项工作中计算的这种关系和断裂力的大小与文献中提出的实验是一致的。在无缺陷和含缺陷的膜模拟过程中,在失效之前观察到由S-S层内Z尺寸突然下降引起的相变。在单轴张力模拟中也观察到这种相变。分析表明,结构缺陷会改变单层MoS2的失效机理,从而降低其机械性能。对于点缺陷,相变是从远离膜中心的累积空位开始的,并加速了新的相传播过程。对于晶界结构,发现它们的断裂强度与晶界能无关。

著录项

  • 作者

    Dang, Khanh.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Engineering Materials Science.;Engineering Mechanical.
  • 学位 M.S.M.E.
  • 年度 2014
  • 页码 90 p.
  • 总页数 90
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号