首页> 外文学位 >Hydro-mechanical analysis of tunneling in saturated ground using a novel and efficient sequential coupling technique.
【24h】

Hydro-mechanical analysis of tunneling in saturated ground using a novel and efficient sequential coupling technique.

机译:使用新型有效的顺序耦合技术对饱和地层中的隧道进行水力力学分析。

获取原文
获取原文并翻译 | 示例

摘要

In 1941, Belgian-born physicist Maurice Anthony Biot (1905-1985) developed the first equations that govern the coupled interactions between fluid flow and deformation in elastic porous media. This hydro-mechanical (H-M) interaction has started to receive wide attention in the field of tunnel engineering. In urban areas, the induced H-M interaction due to surface loading over an existing shallow tunnel can have a severe impact on short- and long-term tunnel stabilities, the degree of which remains unclear. Likewise, advancing tunnel in deep saturated ground causes time-dependent consolidation that is invoked by the transient nature of the coupled interaction. Yet, deep tunnel advance is still commonly simulated in one excavation step and under a steady state condition, oversimplifying the excavation-induced H-M interaction as proposed by Biot.;Explicit coupling techniques have been widely used for H-M analysis of such tunnel problems. However, explicit techniques are conditionally stable, requiring small time steps to maintain numerical stability. To improve the efficiency of H-M analysis, an unconditionally stable explicit finite difference scheme such as the alternating direction explicit (ADE) scheme could be used to solve the flow problem. Yet, the standard ADE scheme is only moderately accurate and restricted to uniform grids and plane strain conditions.;This thesis presents the derivation of novel high-order ADE schemes for non-uniform grids to solve the flow problems in plane strain and axisymmetric conditions. For each condition, the resulting pore pressure solutions from the new ADE scheme were sequentially coupled with a geomechanical simulator in Fast Lagrangian Analysis of Continua (FLAC), resulting in a novel and efficient sequentially-explicit coupling technique called SEA-4 for the plane strain problem and SEA-4-AXI for the axisymmetric problem. This thesis will show that by using SEA-4 and SEA-4-AXI, the H-M simulations of tunneling in saturated ground can be performed efficiently without numerical instability and yet still retain high numerical accuracy. Verifications from well-known consolidations and tunnel problems have shown that SEA-4 and SEA-4-AXI reduced the computer runtime to 20-66% that of FLAC's basic flow scheme. They also maintained maximum absolute errors of < 6% for the pore pressure and < 1.5% for the displacement solutions, demonstrating their future application for producing efficient H-M simulations.;The H-M analysis also showed that under surface loading, tunnel stability in addition to ground strength was largely influenced by liner permeability and the long-term H-M response of the ground. The step-wise excavation in deep advancing tunnel caused a non-monotonic behavior of pore pressure, temporarily confining the advanced core, leading to a new insight for the convergence-confinement method (CCM) in saturated ground. Recognizing this transient coupling effect, this thesis proposed: (1) theoretical relationships between the extrusion and convergence and preconvergence of the face and the advance core, (2) an extended CCM using proposed transient unloading factors and (3) new semi-analytical equations for predicting the transient longitudinal displacement profile (LDP) of a deep saturated tunnel taking into account the transient coupling effect induced by the consolidation process.;In addition to the H-M analysis of tunneling, the thesis made two additional contributions to further explicate the role of H-M interaction in rock engineering in other applications. First, it presented the role of the coupled two-phase flow and geomechanical interaction of CO2 sequestration into deep underground reservoirs. Second, the thesis presented a newly developed constitutive model for predicting the nonlinear shear behavior of rock joints using the linearized implementation of the Barton-Bandis joint model. When this model is coupled with either SEA-4 or SEA-4-AXI, it can be potentially used for H-M analysis of tunneling in fractured saturated rock.
机译:1941年,比利时出生的物理学家莫里斯·安东尼·比奥(Maurice Anthony Biot,1905-1985年)提出了第一个方程,该方程控制弹性多孔介质中流体流动与变形之间的耦合相互作用。这种水力(H-M)相互作用已开始在隧道工程领域引起广泛关注。在城市地区,由于现有浅隧道上的地面荷载而引起的H-M相互作用可能会对隧道的短期和长期稳定性产生严重影响,其程度尚不清楚。同样,在深部饱和地面中推进隧道会导致时间相关的固结,这种固结由耦合相互作用的瞬态性质引起。然而,如Biot所提出的,深孔隧道的推进仍通常是在一个开挖步骤中并在稳态条件下进行模拟,从而过度简化了开挖引起的H-M相互作用。显式耦合技术已广泛用于此类隧道问题的H-M分析。但是,显式技术在条件上是稳定的,需要较小的时间步长才能保持数值稳定性。为了提高H-M分析的效率,可以使用无条件稳定的显式有限差分方案(例如交替方向显式(ADE)方案)来解决流动问题。然而,标准ADE方案仅具有中等精度,并且仅限于均匀的网格和平面应变条件。本文提出了针对非均匀网格的新型高阶ADE方案,以解决平面应变和轴对称条件下的流动问题。对于每种条件,在快速拉格朗日连续性分析(FLAC)中,将新ADE方案产生的孔隙压力解决方案与地质力学模拟器顺序耦合,从而产生了一种新颖有效的连续显式耦合技术,称为SEA-4。问题和SEA-4-AXI用于轴对称问题。本论文将表明,通过使用SEA-4和SEA-4-AXI,可以有效地在饱和地面中进行H-M模拟,而不会产生数值不稳定,但仍保持了较高的数值精度。对著名合并和隧道问题的验证表明,SEA-4和SEA-4-AXI将计算机运行时间减少到FLAC基本流程方案的20-66%。他们还保持最大绝对误差(孔压<6%)和位移解决方案(1.5%),证明了它们在未来进行高效HM模拟的应用.HM分析还表明,在地面载荷下,除了地面以外,隧道稳定性强度很大程度上受衬砌渗透性和地面的长期HM响应影响。深部推进隧道的逐步开挖引起孔隙压力的非单调性,暂时限制了先进的岩心,从而为饱和地层的收敛约束法(CCM)带来了新的见解。认识到这种瞬态耦合效应,本论文提出:(1)面和超前岩心的挤出,收敛和预收敛之间的理论关系;(2)使用提出的瞬态卸荷因子和(3)新的半解析方程式的扩展CCM考虑固结过程引起的瞬态耦合效应,用于预测深部饱和隧道的瞬态纵向位移曲线(LDP)。除了对隧道的HM分析外,本文还做出了两个额外的贡献,以进一步阐明隧道的作用。 HM在岩石工程中的相互作用在其他应用中。首先,它介绍了将二氧化碳固存到深层地下油藏中的两相流与地质力学相互作用的作用。其次,本文提出了一种新开发的本构模型,该模型使用Barton-Bandis节理模型的线性化实现来预测岩石节理的非线性剪切行为。当此模型与SEA-4或SEA-4-AXI结合使用时,可潜在地用于裂缝饱和岩石中隧洞的H-M分析。

著录项

  • 作者

    Prassetyo, Simon Heru.;

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Civil engineering.;Geotechnology.;Mining engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 318 p.
  • 总页数 318
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号