首页> 外文学位 >Step-wise pulling protocols for non-equilibrium dynamics.
【24h】

Step-wise pulling protocols for non-equilibrium dynamics.

机译:非平衡动力学的逐步拉动协议。

获取原文
获取原文并翻译 | 示例

摘要

The fundamental laws of thermodynamics and statistical mechanics, and the deeper understandings of quantum mechanics have been rebuilt in recent years. It is partly because of the increasing power of computing resources nowadays, that allow shedding direct insights into the connections among the thermodynamics laws, statistical nature of our world, and the concepts of quantum mechanics, which have not yet been understood. But mostly, the most important reason, also the ultimate goal, is to understand the mechanisms, statistics and dynamics of biological systems, whose prevailing non-equilibrium processes violate the fundamental laws of thermodynamics, deviate from statistical mechanics, and finally complicate quantum effects.;I believe that investigations of the fundamental laws of non-equilibrium dynamics will be a frontier research for at least several more decades. One of the fundamental laws was first discovered in 1997 by Jarzynski, so-called Jarzynski's Equality. Since then, different proofs, alternative descriptions of Jarzynski's Equality, and its further developments and applications have been quickly accumulated. My understandings, developments and applications of an alternative theory on Jarzynski's Equality form the bulk of this dissertation. The core of my theory is based on stepwise pulling protocols, which provide deeper insight into how fluctuations of reaction coordinates contribute to free-energy changes along a reaction pathway. We find that the most optimal pathways, having the largest contribution to free-energy changes, follow the principle of detailed balance. This is a glimpse of why the principle of detailed balance appears so powerful for sampling the most probable statistics of events. In a further development on Jarzynski's Equality, I have been trying to use it in the formalism of diagonal entropy to propose a way to extract useful thermodynamic quantities such temperature, work and free-energy profiles from far-from-equilibrium ensembles, which can be used to characterize non-equilibrium dynamics.;Furthermore, we have applied the stepwise pulling protocols and Jarzynski's Equality to investigate the ion selectivity of potassium channels via molecular dynamics simulations. The mechanism of the potassium ion selectivity has remained poorly understood for over fifty years, although a Nobel Prize was awarded to the discovery of the molecular structure of a potassium-selective channel in 2003. In one year of performing simulations, we were able to reproduce the major results of ion selectivity accumulated in fifty years. We have been even boldly going further to propose a new model for ion selectivity based on the structural rearrangement of the selectivity filter of potassium-selective KcsA channels. This structural rearrangement has never been shown to play such a pivotal role in selecting and conducting potassium ions, but effectively rejecting sodium ions. Using the stepwise pulling protocols, we are also able to estimate conductance for ion channels, which remains elusive by using other methods. In the light of ion channels, we have also investigated how a synthetic channel of telemeric G-quadruplex conducts different types of ions. These two studies on ion selectivity not only constitute an interesting part of this dissertation, but also will enable us to further explore a new set of ion-selectivity principles.;Beside the focus of my dissertation, I used million-atom molecular dynamics simulations to investigate the mechanical properties of body-centered-cubic (BCCS) and face-centered-cubic (FCCS) supercrystals of DNA-functionalized gold nanoparticles. These properties are valuable for examining whether these supercrystals can be used in gene delivery and gene therapy. The formation of such ordered supercrystals is useful to protect DNAs or RNAs from being attacked and destroyed by enzymes in cells. I also performed all-atom molecular dynamics simulations to study a pure oleic acid (OA) membrane in water that results into a triple-layer structure. The simulations show that the trans-membrane movement of water and OAs is cooperative and correlated, and agrees with experimentally measured absorption rates. The simulation results support the idea that OA flip-flop is more favorable than transport by means of functional proteins. This study might provide further insight into how primitive cell membranes work, and how the interplay and correlation between water and fatty acids may occur.
机译:近年来,已经重建了热力学和统计力学的基本定律,以及对量子力学的更深刻理解。部分原因是由于当今计算资源的日益强大,这使人们可以直接了解热力学定律,我们世界的统计性质以及量子力学概念之间的联系,而这些之间的联系尚未得到理解。但最重要的是,最重要的原因,也是最终目标,是了解生物系统的机理,统计和动力学,其普遍存在的非平衡过程违反了热力学的基本定律,背离了统计力学,最终使量子效应复杂化。 ;我认为,对非平衡动力学基本定律的研究至少将是几十年的前沿研究。其中一项基本定律是由Jarzynski于1997年首次发现的,即所谓的Jarzynski的平等。从那时起,已经迅速积累了不同的证明,对Jarzynski平等的替代描述及其进一步的发展和应用。我对Jarzynski平等的替代理论的理解,发展和应用构成了本文的主体。我的理论的核心是基于逐步拉式协议,该协议可对反应坐标的波动如何促进反应途径中的自由能变化提供更深入的了解。我们发现,对自由能变化贡献最大的最佳途径遵循详细平衡的原则。这就是为什么详细平衡原理对于采样最可能的事件统计数据如此强大的原因。在Jarzynski方程的进一步发展中,我一直在尝试将其用于对角熵的形式主义中,以提出一种方法来从远离平衡的集合中提取有用的热力学量,例如温度,功和自由能分布图,用于表征非平衡动力学。此外,我们已应用逐步拉动方案和Jarzynski的Equality通过分子动力学模拟研究钾通道的离子选择性。尽管2003年发现钾离子选择性通道的分子结构获得了诺贝尔奖,但人们对钾离子选择性的机理仍然了解不到五十年。在进行模拟的一年中,我们得以重现离子选择性的主要结果积累了五十年。我们甚至大胆地进一步提出了一种基于钾选择性KcsA通道选择性过滤器的结构重排的离子选择性新模型。从未显示出这种结构上的重排在选择和传导钾离子中起着关键作用,但是却有效地排斥了钠离子。使用逐步拉动协议,我们还能够估计离子通道的电导,而使用其他方法仍然难以捉摸。根据离子通道,我们还研究了端粒G四联体的合成通道如何传导不同类型的离子。这两项关于离子选择性的研究不仅构成了本论文的一个有趣的部分,而且使我们能够进一步探索一套新的离子选择性原理。在本论文的重点之外,我还使用了百万原子分子动力学模拟来研究离子选择性。研究了DNA功能化金纳米粒子的体心立方(BCCS)和面心立方(FCCS)超晶的力学性能。这些特性对于检查这些超晶是否可用于基因传递和基因治疗非常有价值。这种有序超晶的形成可用于保护DNA或RNA免受细胞内酶的攻击和破坏。我还进行了全原子分子动力学模拟,以研究水中的纯油酸(OA)膜,该膜形成三层结构。模拟表明,水和OAs的跨膜运动是协同和相关的,并且与实验测得的吸收率一致。仿真结果支持以下观点:OA触发器比借助功能蛋白的转运更为有利。这项研究可能会进一步了解原始细胞膜如何工作,以及水和脂肪酸之间的相互作用和相关性如何发生。

著录项

  • 作者

    Ngo, Van Anh.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Physics Theory.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 250 p.
  • 总页数 250
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号