首页> 外文学位 >Plasmonic Resonance of Active Dimer Systems in the Presence of Optical Binding Forces
【24h】

Plasmonic Resonance of Active Dimer Systems in the Presence of Optical Binding Forces

机译:光学结合力存在下的主动二聚体系统的等离子体共振。

获取原文
获取原文并翻译 | 示例

摘要

Optical properties of metal nanoparticles are related to the collective oscillations of conduction electrons. In metals, these electrons are loosely bound with the lattice core and therefore oscillate freely with the incident electromagnetic wave. Such oscillations are popularly known as plasmonic resonance. The term nanoparticle, in general, refers to small cluster of atoms of size ranging from one nanometer to few hundred nanometers. Plasmonic resonance in metal spherical and core-shell nanoparticles yields a number of different properties and remarkably such resonances are tunable with both the geometrical parameters of the particles involved and also with the background. When more than one metal nanoparticles are located at close proximity to each other, can influence each others optical responses. In this case, their responses can be tuned by, along with many other means, varying the interparticle separations. This work attempts the theoretical design of a tunable surface with two metallic nanoparticles where the interparticle separation is varied with the aid of optical binding forces. When such a tunable surface is subjected to a narrow band light incidence, it can shift the central frequency of the incident light. The amount of such frequency shifts can be controlled with their separation distances.;In this work, that separation distance is tuned with the optical binding force. The optical binding phenomenon involves more than one particles. It may be defined as the stable spatial reconfiguration of nanoparticles due to light illumination and a simultaneous redistribution of incident light by the particles. This thesis work begins with a Maxwell Stress Tensor based formulation of the optical binding force between two Rayleigh particles upon a unit amplitude plane wave illumination. Next, this framework was extended to a narrow band light by decomposing the narrow band light into a large number of plane wave components with different angular velocities.;The total optical binding force increases with the increasing bandwidth of the incident light and the central frequency dictate the nature of the binding force (attractive or repulsive). Afterwards, a tunable surface comprised of a silver nanoparticle dimer is demonstrated. It was found that with the increase of the interparticle separation, the response of the surface shifts towards the higher wavelengths (red shift). On the other hand, when the the particles come close towards one another, the output band widens compared to that of the former, along a red shift of the response.
机译:金属纳米粒子的光学性质与传导电子的集体振荡有关。在金属中,这些电子与晶格核松散结合,因此随入射电磁波自由振荡。这种振荡通常被称为等离子体共振。通常,术语纳米粒子是指尺寸范围从一纳米到几百纳米的小原子簇。金属球形纳米颗粒和核-壳纳米颗粒中的等离子体共振产生许多不同的性质,并且明显地,这种共振可以根据所涉及的颗粒的几何参数以及背景来进行调节。当多于一种的金属纳米粒子彼此紧邻时,会相互影响光学响应。在这种情况下,可以通过改变粒子间的间隔以及许多其他方式来调整它们的响应。这项工作尝试了具有两个金属纳米粒子的可调表面的理论设计,其中借助光学结合力改变粒子间的间距。当这样的可调表面受到窄带光的入射时,它可以改变入射光的中心频率。这种频移的量可以通过它们的分离距离来控制。在这项工作中,分离距离是通过光学结合力来调节的。光学结合现象涉及一个以上的颗粒。可以将其定义为纳米粒子由于光照和粒子同时入射光的重新分布而产生的稳定的空间重构。本论文的工作从基于麦克斯韦应力张量的公式开始,即在单位振幅平面波照射下,两个瑞利粒子之间的光学结合力。接下来,通过将窄带光分解为具有不同角速度的大量平面波分量,将该框架扩展到窄带光。;总的光学结合力随入射光带宽的增加而增加,并且中心频率决定了约束力的性质(有吸引力或排斥)。之后,展示了由银纳米颗粒二聚体组成的可调表面。发现随着粒子间分离的增加,表面的响应向更高的波长偏移(红移)。另一方面,当颗粒彼此接近时,输出带与前者相比变宽,响应响应发生红移。

著录项

  • 作者

    Nazim, Md Saber.;

  • 作者单位

    Arkansas State University.;

  • 授予单位 Arkansas State University.;
  • 学科 Electrical engineering.;Engineering.
  • 学位 M.S.
  • 年度 2018
  • 页码 63 p.
  • 总页数 63
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号