首页> 外文学位 >Geometry of canonical bases and mirror symmetry.
【24h】

Geometry of canonical bases and mirror symmetry.

机译:规范基础的几何形状和镜像对称性。

获取原文
获取原文并翻译 | 示例

摘要

A decorated surface S is an oriented surface, with or without boundary, and a finite set {s1, ..., sn} of special points on the boundary, considered modulo isotopy. Let G be a split reductive group over Q .;A pair (G, S) gives rise to a moduli space AG,S , closely related to the moduli space of G-local systems on S. It is equipped with a positive structure [23]. So the set of its integral tropical points AG,S&parl0;Z t&parr0; is defined. We introduce a rational positive function W on the space AG,S , called the potential. Its tropicalization is a function Wt:AG, S&parl0;Zt &parr0;→Z . The condition Wt ≥ 0 determines a subset A+G,S &parl0;Zt&parr0; . For G = SL2, we recover the set of positive integral A -laminations on S from [23].;We prove that when S is a disc with n special points on the boundary, the set A+G,S &parl0;Zt&parr0; parametrizes top dimensional components of the convolution varieties. Via the geometric Satake correspondence [72], [43], [74], [9], they provide a canonical basis in the tensor product invariants of irreducible modules of the Langlands dual group GL: &parl0;Vl1⊗&ldots;⊗ Vln&parr0;GL . 1 When G = GLm, n = 3, there is a special coordinate system on AG,S [23]. We show that it identifies the set A+GLm,S &parl0;Zt &parr0; with Knutson-Tao's hives [65]. Our result generalizes a theorem of Kamnitzer [56], who used hives to parametrize top components of convolution varieties for G = GLm, n = 3. For G = GLm, n > 3, we prove Kamnitzer's conjecture [56]. We show that our parametrization for any G and n = 3 agrees with Berenstein-Zelevinsky's parametrization [14], whose cyclic invariance is obscure.;We define more general positive spaces with potentials ( A,W ), parametrizing mixed configurations of flags. Using them, we define a generalization of Mirkovic-Vilonen cycles [74], and a new canonical basis in Vl1⊗&ldots;⊗V ln , generalizing the MV basis in Vlambda. Our construction comes naturally with a parametrization of generalized MV cycles. For the classical MV cycles it is equivalent to the one discovered by Kamnitzer [55].;We prove that the set A+G,S &parl0;Zt&parr0; parametrizes top dimensional components in a new moduli space, surface affine Grassmannian, generalizing the fibers of the convolution maps. These components are usually infinite dimensional. We define their dimension being an element of a Z -torsor, rather then an integer. We define a new moduli space LocGL,S which reduces to the moduli spaces GL-local systems on S if S has no special points. The set A+G,S &parl0;Zt&parr0; parametrizes a basis in the linear space of regular functions on LocGL,S .;We suggest that the potential W itself, not only its tropicalization, is important -- it should be viewed as the potential for a Landau-Ginzburg model on AG,S . We conjecture that the pair ( AG,S,W ) is the mirror dual to LocGL,S . In a special case, we recover Givental's description of the quantum cohomology connection for flag varieties and its generalization [41], [79]. We formulate equivariant homological mirror symmetry conjectures parallel to our parametrization of canonical bases.;We relate the above dualities to Fock-Goncharov's cluster Duality Conjecture [25]. We investigate the cluster Duality Conjecture for cluster ensembles of Cartan-Killing type A. We prove that the products of elements of the canonical basis for one cluster space are equivalent to the Minkowski sums of integral tropical points of its dual space. We show that the latter are tropical Stasheff polytopes..
机译:装饰表面S是具有或不具有边界的定向表面,并且边界上的特殊点的有限集{s1,...,sn}被认为是模同位素。令G为Q上的分裂还原基团;对(G,S)产生模空间AG,S,与S上G局部系统的模空间紧密相关。它具有正结构[ 23]。因此,其积分热带点的集合AG,S& Z t&parr0;被定义为。我们在空间AG,S上引入有理正函数W,称为势。它的热带化是一个函数Wt:AG,S&parl0; Zt&parr0;→Z。条件Wt≥0确定子集A + G,S&parl0; Zt&parr0;并且。对于G = SL2,我们从[23]中恢复S上的正整数A-叠层的集合。我们证明,当S是边界上具有n个特殊点的圆盘时,集合A + G,S&parl0; Zt&parr0;参数化卷积变体的顶级维度组件。通过几何Satake对应关系[72],[43],[74],[9],它们为Langlands对偶组GL的不可约模的张量积不变量提供了规范基础:&parl0;Vl1⊗&ldots⊗Vln&parr0; GL。 1当G = GLm,n = 3时,在AG,S上有一个特殊的坐标系[23]。我们证明它标识集合A + GLm,S&parl0; Zt&parr0;与Knutson-Tao的蜂箱[65]。我们的结果推广了Kamnitzer [56]的一个定理,他使用蜂箱对G = GLm,n = 3的卷积变量的顶部成分进行参数化。对于G = GLm,n> 3,我们证明了Kamnitzer的猜想[56]。我们证明我们对任何G和n = 3的参数化都与Berenstein-Zelevinsky的参数化[14]一致,后者的循环不变性是模糊的。;我们定义了带有电势(A,W)的更一般的正空间,参数化了标志的混合配置。使用它们,我们定义了Mirkovic-Vilonen循环的泛化[74],并在Vl1& Vln中定义了一个新的规范基础,在Vlambda中泛化了MV基础。我们的构造自然带有广义MV循环的参数化。对于经典的MV周期,它等效于Kamnitzer [55]发现的周期。我们证明了集合A + G,S&parl0; Zt&parr0;。参数化了新的模空间中的表面维仿射Grassmannian的高维分量,从而对卷积图的纤维进行了泛化。这些成分通常是无限的。我们将它们的尺寸定义为Z -torsor的元素,而不是整数。我们定义了一个新的模空间LocGL,S,如果S没有特殊点,它会减少到S上的GL局部系统的模空间。集合A + G,S&parl0; Zt&parr0;参数化了LocGL,S上正则函数的线性空间的基础;我们建议潜在的W本身,不仅是其热带化,也很重要-应该将其视为AG,S上Landau-Ginzburg模型的潜力。我们推测该对(AG,S,W)是LocGL,S的镜像对。在特殊情况下,我们恢复了纪梵特(Givetal)对标志变体的量子同调连接及其泛化的描述[41],[79]。我们制定了与我们的规范基础的参数化平行的等变同源镜对称猜想。;我们将上述对偶关系与福克-贡恰洛夫的聚类对偶猜想[25]相关。我们研究了Cartan-Killing类型A的簇集成体的簇对偶猜想。我们证明了一个簇空间的正则基础元素的乘积等于其对偶空间的热带积分的Minkowski和。我们显示后者是热带的Stasheff多表位。

著录项

  • 作者

    Shen, Linhui.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号