首页> 外文学位 >A synthetic biology application in metabolic engineering.
【24h】

A synthetic biology application in metabolic engineering.

机译:合成生物学在代谢工程中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Since the 1970s, bioprocess engineering has focussed on the optimization of the production of chemicals via biological transformations. In particular, much emphasis has been placed on estimating the optimal process variables to maximize the production of the desired chemical. Notably, engineers were limited to using macroscopic process variables, such as the feed rate of the bioreactor. Optimization involves the trade-off between productivity and yield. High values of both metrics are required for a viable plant; however, the two metrics are in competition. Recently, the emergence of synthetic biology has enabled bioengineers to extend the optimization of bioprocesses from the macroscopic level to the genetic level. With this in mind, we propose a novel synthetic biology approach for bioprocess optimization. Our case study involves a lactic acid-producing Escherichia coli strain with the adh (alcohol dehydrogenase) and pta (phosphotransacetylase) genes deleted. Deletion of these genes increases the yield of lactic acid; but, at the same time, growth rate and productivity decrease drastically. Initially, we introduce the model-based design of an integrated genetic circuit that links a density sensory mechanism to a dynamic genetic controller, and subsequently to bacterial metabolism. In this way, the genetic circuit dynamically controls genes that contribute to growth and productivity. Then, we conduct a mathematical analysis of the model to help us in the initial design and further optimization of the integrated circuit. The analysis can minimize the time required to design and troubleshoot the genetic circuit. Also, the analysis showed that the induction time is the most important process variable we can optimize. Finally, we carried out experimental results in an attempt to utilize the genetic toggle switch as a controller to manipulate genes adh and pta in an ON-OFF fashion. While we expected to observe some growth restoration and productivity improvement, it is common for synthetic biology constructs to behave differently in different environments or strains. Indeed, the experimental results show that our assumption that the genetic toggle switch will restore wild-type levels of adh-pta expression may not be true. In summary, this work introduces a novel synthetic biology approach for the optimization of bioprocesses and attempts a proof of concept implementation of the strategy. Although, the initial implementation was not successful, we have done some troubleshooting with respect to the problems involved and suggestions are given for future experiments.
机译:自1970年代以来,生物工艺工程一直致力于通过生物转化来优化化学品生产。尤其是,已经着重于估计最佳工艺变量以最大化所需化学品的产量。值得注意的是,工程师只能使用宏观过程变量,例如生物反应器的进料速度。优化涉及生产力和产量之间的权衡。一个可行的工厂需要两个指标都很高。但是,这两个指标相互竞争。最近,合成生物学的出现使生物工程师能够将生物过程的优化从宏观层面扩展到遗传层面。考虑到这一点,我们提出了一种用于生物过程优化的新型合成生物学方法。我们的案例研究涉及删除了adh(酒精脱氢酶)和pta(磷酸转乙酰酶)基因的产乳酸大肠杆菌。这些基因的缺失增加了乳酸的产量;但是,与此同时,增长率和生产率却急剧下降。首先,我们介绍集成遗传电路的基于模型的设计,该电路将密度感官机制链接到动态遗传控制器,然后链接到细菌代谢。这样,遗传回路可以动态地控制有助于生长和生产力的基因。然后,我们对该模型进行数学分析,以帮助我们进行集成电路的初始设计和进一步优化。该分析可以最小化设计和排除遗传电路故障所需的时间。此外,分析表明,诱导时间是我们可以优化的最重要的过程变量。最后,我们进行了实验结果,试图利用遗传拨动开关作为控制器以开-关方式操纵基因adh和pta。尽管我们期望观察到一些生长恢复和生产力提高,但合成生物学构建体在不同环境或菌株中表现不同的情况很常见。确实,实验结果表明,我们关于基因拨动开关将恢复adh-pta表达的野生型水平的假设可能不正确。总之,这项工作介绍了一种用于优化生物过程的新颖的合成生物学方法,并尝试对该策略的概念实施进行证明。尽管最初的实施没有成功,但是我们针对所涉及的问题进行了一些故障排除,并为以后的实验提供了建议。

著录项

  • 作者

    Anesiadis, Nikolaos.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Engineering Chemical.;Engineering Biomedical.;Engineering System Science.;Applied Mathematics.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 283 p.
  • 总页数 283
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号