首页> 外文学位 >Nanoscale Mechanics of Helical and Angular Structures: Exploring and Expanding the Capabilities of Objective Molecular Dynamics.
【24h】

Nanoscale Mechanics of Helical and Angular Structures: Exploring and Expanding the Capabilities of Objective Molecular Dynamics.

机译:螺旋和角结构的纳米尺度力学:探索和扩展客观分子动力学的能力。

获取原文
获取原文并翻译 | 示例

摘要

Objective molecular dynamics (OMD) is a recently developed generalization of the traditionally employed periodic boundary conditions (PBC) used in atomistic simulations. OMD allows for helical and/or rotational symmetries to be exploited in addition to translational symmetry. These symmetries are especially prevalent in nanostructures, and OMD enables or facilitates many simulations that were previously dicult or impossible to carry out. This includes simulations of pristine structures that inherently possess helical and/or angular symmetries (such as nanotubes), structures that contain defects (such as screw disclocations) or stuctures that are subjected to deformations (such as bending or torsion).;OMD is already a powerful method, having been coupled with the quantum-mechanical density functional-based tight-binding (DFTB) method, as well as with classical potentials. In this work, these capabilities are used to investigate electromechanical properties of silicon nanowires, treating the mechanical simulation results in the context of continuum mechanics. The bending of graphene is studied, and the underlying molecular orbital mechanisms are investigated. The implications of the results on other simulation methods used to study bending of graphene are discussed. OMD is used in an experimental-theoretical collaboration studying the kinking of graphene and boron nitride nanoribbons. The simulations elucidate and quantify the underlying mechanism behind the kinking seen in experiments.;Although theoretically, as a generalization, OMD can match or exceed the capabilities of PBC in all cases, OMD is a new method. Thus, practical implementation must be tackled to expand the capabilities of OMD to new simulation methods and simulation types. In this work, OMD is expanded to allow coupling with self-consistent charge (SCC) DFTB, by developing and implementing the required summation formulas for electrostatic and dispersion interactions. SCC-DFTB is an improved form of the standard DFTB method which includes explicit consideration of charge transfer between atoms. This allows for improved description of heteronuclear materials. To demonstrate this capability, proof-of-concept calculations are carried out on a boron nitride nanotube, a screw-dislocated zinc oxide nanowire, and a single-helix DNA molecule. Finally, preliminary development of heat current calculations under OMD is presented. Heat current calculations are used for calculating thermal conductivity of materials from equilibrium molecular dynamics. So far, heat current calculations have been implemented for the pairwise Lennard-Jones potential. The next development (not yet implemented) is the extension of the heat current calculation under OMD to the Tersoff interatomic potential. The challenges and considerations involved are discussed.
机译:客观分子动力学(OMD)是对原子模拟中传统采用的周期性边界条件(PBC)的最新开发概括。除平移对称性外,OMD还允许利用螺旋和/或旋转对称性。这些对称性在纳米结构中尤为普遍,而OMD则使许多以前难以实现或无法实现的模拟得以实现或促进。这包括原始具有螺旋和/或角度对称性的原始结构(例如纳米管),包含缺陷的结构(例如螺钉错位)或经受变形(例如弯曲或扭曲)的结构的模拟; OMD已经存在一种强大的方法,已与基于量子力学密度函数的紧密结合(DFTB)方法以及经典势能结合在一起。在这项工作中,这些功能用于研究硅纳米线的机电性能,并在连续力学的背景下处理机械仿真结果。研究了石墨烯的弯曲,并研究了潜在的分子轨道机理。讨论了结果对用于研究石墨烯弯曲的其他模拟方法的影响。 OMD用于实验理论合作研究石墨烯和氮化硼纳米带的纽结。仿真阐明并量化了实验中出现的扭结背后的潜在机制。尽管从理论上讲,OMD可以在所有情况下匹配或超过PBC的功能,但OMD是一种新方法。因此,必须解决实际的实现,以将OMD的功能扩展到新的仿真方法和仿真类型。在这项工作中,通过开发和实现静电和色散相互作用所需的求和公式,OMD得以扩展以允许与自恒电荷(SCC)DFTB耦合。 SCC-DFTB是标准DFTB方法的改进形式,其中包括明确考虑原子之间的电荷转移。这允许改进对异核材料的描述。为了证明这种能力,对氮化硼纳米管,螺旋位错的氧化锌纳米线和单螺旋DNA分子进行了概念验证计算。最后,介绍了OMD下热流计算的初步进展。热流计算用于根据平衡分子动力学计算材料的热导率。到目前为止,已经对成对的Lennard-Jones势进行了热电流计算。下一步的发展(尚未实施)是将OMD下的热流计算扩展到Tersoff原子间电势。讨论了所涉及的挑战和考虑因素。

著录项

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Mechanical.;Nanotechnology.;Nanoscience.;Physics Molecular.;Applied Mechanics.;Physics Atomic.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号