首页> 外文学位 >The Significance of Grouping and Missed Bubbles on Interfacial Area Concentration and Void Fraction
【24h】

The Significance of Grouping and Missed Bubbles on Interfacial Area Concentration and Void Fraction

机译:分组和气泡丢失对界面面积浓度和空隙率的意义

获取原文
获取原文并翻译 | 示例

摘要

The two-fluid model is used in nuclear reactor safety codes. Two of the important constitutive relations will be discussed in this study, the interfacial area concentration and void fraction. The Interfacial area concentration is directly affected by the number of bubbles and how these bubbles are categorized into groups. In this study, a new algorithm was implemented to account for trailing bubbles, bubbles with short response times, and the categorization of bubbles based upon diameter for all group 1 bubbles. The optical and conductivity probes were used to determine the void fraction and interfacial area concentration in a bubble column. The new algorithm was benchmarked against the previous algorithm. The data acquisition systems for both probes were set at 22 kHz. This is sufficient for the optical probe. However, due to the response time of the conductivity probe, the previous algorithm does not pick up all the bubbles at the 22 kHz sampling rate. There is an increase of up to 28% for the total interfacial area concentration when the trailing bubbles are collected, and bubble diameter is used instead of chord length for the optical probe. The conductivity probe for the 22k Hz sample rate in the new version, collects more bubbles than the previous version. The total void fraction for the conductivity probe is within 15% of the optical probe for the locations tested. The total interfacial area concentration is up to 80% higher than the optical probe. Additional testing should be completed at higher sampling rates to determine the overall accuracy when comparing the conductivity probe to the optical probe for the new algorithm. The higher sampling rate should increase the accuracy for determining the front and rear interface location for all bubbles in the system.
机译:核反应堆安全规范中使用了双流体模型。本研究将讨论两个重要的本构关系,即界面面积浓度和空隙率。界面区域浓度直接受气泡数量以及这些气泡如何分类的影响。在这项研究中,实施了一种新算法来解决所有第1组气泡的尾随气泡,响应时间短的气泡以及基于直径的气泡分类。光学探针和电导率探针用于确定气泡柱中的空隙率和界面面积浓度。新算法相对于先前算法进行了基准测试。两个探头的数据采集系统均设置为22 kHz。这对于光学探针就足够了。但是,由于电导率探针的响应时间,以前的算法无法以22 kHz的采样率拾取所有气泡。收集尾随气泡时,总界面面积浓度最多增加28%,并且使用气泡直径代替光学探针的弦长。新版本中22k Hz采样率的电导率探针比以前的版本收集更多的气泡。对于测试位置,电导率探针的总空隙率在光学探针的15%以内。总界面面积浓度比光学探针高80%。在将电导率探头与光学探头进行新算法比较时,应以更高的采样率完成附加测试,以确定整体精度。较高的采样率应提高确定系统中所有气泡的前后接口位置的准确性。

著录项

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Thermodynamics.;Nuclear engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号