首页> 外文学位 >Design and Synthesis of Multimodal Lanthanide-based Nanoparticles for Bioapplications
【24h】

Design and Synthesis of Multimodal Lanthanide-based Nanoparticles for Bioapplications

机译:生物应用多峰镧系元素纳米粒子的设计与合成

获取原文
获取原文并翻译 | 示例

摘要

Nanotechnology has allowed the fabrication of multifunctional nanoplatforms by integrating various components into a single nanoformulation. Their size compatibility with the biological systems and the development of efficient and flexible approaches that afford control to tailor the physical and chemical properties of these nanostructures with the ability to thoroughly characterize them facilitated a rapid rise in the use of nanoparticles as unique tools for many biological applications. In the clinic, these engineered nanoparticles, capable of diverse functionalities, hold great promise to a more individualized approach to management and therapies of various diseases. Combining contrasts for different imaging modalities in a single agent can give more accurate and detailed information on the physiological and anatomical characteristics of the disease pathology. Integration of imaging into the delivery of therapeutic agents offers a safer and more effective approach by ensuring sufficient accumulation in target tissues and by monitoring the effects both on the target and the surrounding healthy tissues.;Most fluorescent nanomaterials including quantum dots and dye-doped silica/gold nanomaterials are generally excited by ultraviolet (UV) or visible light that have limited penetration depth, induces autofluorescence and causes photodamage to cells with prolonged exposure. The remarkable property of the upconverting lanthanide-based nanoparticles to efficiently convert near infrared light (NIR) to shorter wavelengths circumvents these challenges. In addition, judicious choice of lanthanide composition allows the integration of several imaging modalities such as MRI and CT with added therapeutic modality.;The central theme of this thesis is design and development of lanthanide-based nanoparticles to yield multifunctional platforms advancing their suitability for research and clinical applications. A systematic approach to produce highly controlled hexagonal sodium lanthanide fluorides (NaLnF4) and the strategies used to fine tune the optical properties for high-contrast NIR in vivo optical imaging, and to serve as photon nanotransformer for precise control of light activated cellular functions are presented. The developed nanoformulation for optogenetics offers unprecedented opportunities for noninvasive control over neuronal circuitry of live animals by allowing localized emission of blue activating light through excitation of NIR light. This is a great advancement in optogenetics technology, which is severely hampered by the poor penetration of visible light in the deep brain regions, thus, requiring blue laser inserted into the brain of the animal.;Food and Drug Administration requires complete clearance of metal-containing nanoparticles in a reasonable amount of time to minimize the likelihood of potential toxicity. The large size of the nanoparticles and how it relates to normal physiology hinders their clinical translation. In general, nanoparticles with hydrodynamic diameter > 8 nm is rapidly captured by the macrophages of the reticuloendothelial system, resulting in a limited circulation time and inefficient clearance from the body. Here, ultrasmall, sub-5nm nanoparticles were developed to realize the promise of this nanoparticles for clinical use in image-guided radiotherapy. The combination of Gd and Yb in the nanocrystal yielded a bimodal probe for MRI and CT imaging with properties comparable to existing commercial agents (e.g. MagnevistRTM, iohexol). These high-Z lanthanides can also act as radiosensitizers by emitting low energy Auger electrons following radiotherapy by X-ray. Reducing the size of the nanoparticles allowed complete elimination from the body within days (i.e., 4 days) through hepatic and renal clearance as revealed from ICP-MS analysis of Gd3+.
机译:纳米技术通过将各种成分整合到一个纳米配方中,从而可以制造多功能纳米平台。它们与生物系统的尺寸相容性以及有效和灵活方法的发展,这些方法提供控制以定制这些纳米结构的物理和化学特性,并能够对其进行全面表征,从而促进了纳米颗粒作为许多生物的独特工具的迅速崛起。应用程序。在临床上,这些经过工程改造的纳米颗粒具有多种功能,它们有望以更加个性化的方式来管理和治疗各种疾病。在单个药物中组合不同成像方式的对比可以提供有关疾病病理生理和解剖特征的更准确和详细的信息。通过确保在靶组织中的充分积累并监测对靶组织和周围健康组织的影响,将成像整合到治疗剂的输送中提供了一种更安全有效的方法。大多数荧光纳米材料包括量子点和染料掺杂的二氧化硅纳米金材料通常被紫外线(UV)或可见光激发,这些光具有有限的穿透深度,诱导自发荧光,长时间暴露会对细胞造成光损伤。上转换镧系元素纳米粒子的显着特性可以有效地将近红外光(NIR)转换为较短的波长,从而克服了这些挑战。此外,明智地选择镧系元素组成可以整合多种成像方式,如MRI和CT以及增加的治疗方式。本论文的主题是设计和开发基于镧系元素的纳米粒子,以生产出多功能平台,从而提高了它们的研究适用性。和临床应用。提出了一种系统化的方法来生产高度可控的六方镧系氟化镧(NaLnF4),以及用于微调高对比度NIR体内光学成像的光学特性并用作光子纳米转换器以精确控制光激活的细胞功能的策略。 。通过允许近红外激发光局部激活蓝色激活光的发射,为光遗传学开发的纳米制剂为活体神经元回路的无创控制提供了前所未有的机会。这是光遗传学技术的一大进步,可见光在大脑深部区域的穿透性差,严重阻碍了光遗传学技术的发展,因此需要将蓝色激光插入动物的大脑。在合理的时间内含有纳米颗粒,以最大程度地降低潜在毒性的可能性。纳米粒子的大尺寸及其与正常生理的关系阻碍了它们的临床翻译。通常,水动力直径> 8 nm的纳米颗粒会被网状内皮系统的巨噬细胞迅速捕获,导致有限的循环时间和从体内的清除效率低下。在这里,开发了小于5nm的超小纳米颗粒,以实现这种纳米颗粒在图像引导放射治疗中的临床应用前景。纳米晶体中Gd和Yb的结合产生了一种用于MRI和CT成像的双峰探针,其性能可与现有商业试剂(例如MagnevistRTM,碘海醇)媲美。这些高Z镧系元素还可以通过X射线放疗后发射低能俄歇电子来充当放射增敏剂。 ICP-MS对Gd3 +的分析表明,减小纳米颗粒的大小可在几天(即4天)内通过肝和肾清除完全从体内清除。

著录项

  • 作者

    Damasco, Jossana Abcede.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Nanoscience.;Nanotechnology.;Materials science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号