首页> 外文学位 >The Deformation, Yielding, and Fracture of Ultra-high Molecular Weight Polyethylene for Use in Total Joint Replacements
【24h】

The Deformation, Yielding, and Fracture of Ultra-high Molecular Weight Polyethylene for Use in Total Joint Replacements

机译:用于全关节置换的超高分子量聚乙烯的变形,屈服和断裂

获取原文
获取原文并翻译 | 示例

摘要

Each year close to one millions patients within the United States, receive a total joint replacement (TJR) to alleviate pain from severe debilitating osteoarthritis. TJRs can comprise hip, knee, shoulder, and even elbow and ankle replacements. Though these implants differ in anatomical function they have a consistent theme, a hard-on-soft bearing couple consisting of hard cobalt chrome (CoCr) and soft ultra-high molecular weight polyethylene (UHMWPE). UHMWPE is a semi-crystalline polymer with 2--6 million g/mol where long molecular chains create high entanglements and help give the material high energetic toughness. These molecular characteristics also provide a low coefficient of friction desirable for TJRs. This coupling pair has been the standard of care for nearly sixty years however not without some complications. TJRs primarily fail from wear debris that is liberated from the UHMWPE bearing surface. This wear debris is caused by successive plastic deformation from implant loading leading to crack initiation below the implant surface. Crack initiation leads to fatigue crack growth with the eventual liberation of debris. As a result of this detriment, there have been several changes to the formulations that make up UHMWPE. These changes primarily include radiation cross-linking to improve wear resistance. Increased wear resistance comes with concomitant trade-offs to the mechanical properties of the material.;Radiation cross-linking through gamma irradiation, introduces free radicals to the material. Free- radical need to be eliminated otherwise they will react with the body and cause the polymer to oxidize in an in vivo environment. To alleviate these free-radicals post processing is performed. This post processing usually consists of thermal annealing treatments either above or below the melt temperature of UHMWPE. More recently, UHMWPE materials have moved away from post irradiation annealing in favor of antioxidant additions to the material. These antioxidants, such as vitamin E, are added to stabilize the material after irradiation and to prevent any possibility of oxidative embrittlement during in vivo operation. All of these unique additions to UHMWPE pose the important question of how the material's fundamental mechanical properties are affected. There is a plethora of research data on the mechanical properties of UHMWPE and some of its material formulations, however when one dives into the procedural methods of these studies there are significant inconsistencies.;These inconsistencies are rooted in the procedures used to analyze and create material mechanical properties. Unlike metallic materials where methods for analyzing mechanical properties are very well understood, polymeric materials offer a more complex challenge when interpreting their constitutive behavior. This is extremely important when polymeric materials, such as UHMWPE are used in safety critical applications such as TJRs. These challenges increase when UHMWPE is tailored through combinations of resin type, radiation cross-linking, and antioxidant additions. As a result there is a need to answer from a methodological perspective how the mechanical properties of UHMWPE change with different material formulations under different loading scenarios.;This dissertation provides a comprehensive and thorough assessment of the mechanical properties of UHMWPE across 12 different material formulations focusing on how the methods used to analyze mechanical behavior can be extremely important. First, a comprehensive microstructural analysis is performed through differential scanning calorimetry (DSC) and small angle x-ray scattering (SAXS) to gather microstructure data for its potential effect on mechanical properties. Then tensile deformation in UHMWPE and its various material formulations are investigated. Engineering versus true tensile stress-strain data is looked at to elucidate the differences between analysis methods for determining elastic properties, yield, post yield, and ultimate behavior. Tensile constitutive properties are then compared to properties determined from compression and nanoindentation in an effort to understand material deformation trends across measurement methods. Then microstructure and tensile analysis are applied in the determination of the elastic-plastic fracture, or J-integral, toughness behavior of UHMWPE. Finally, this study concludes with a mechanistic analysis of the crack growth mechanisms to validate fracture toughness methods.
机译:在美国,每年有将近一百万的患者接受全关节置换(TJR),以减轻严重的使人衰弱的骨关节炎的疼痛。 TJR可以包括髋,膝,肩,甚至肘部和踝部置换。尽管这些植入物的解剖功能不同,但它们具有一致的主题,即由硬钴铬(CoCr)和软超高分子量聚乙烯(UHMWPE)组成的硬对软轴承对。 UHMWPE是一种半结晶聚合物,具有2--6百万克/摩尔,其中长分子链会产生高纠缠度,并有助于赋予该材料高的能量韧性。这些分子特性还提供了TJR所需的低摩擦系数。这对联轴器已经成为近60年的护理标准,但并非没有复杂之处。 TJR主要是由于从UHMWPE轴承表面释放出来的磨损碎屑而失效。这种磨损碎片是由植入物负载引起的连续塑性变形导致植入物表面下方的裂纹引发而引起的。裂纹萌生会导致疲劳裂纹扩展,并最终释放碎屑。由于这种损害,组成UHMWPE的配方发生了数种变化。这些变化主要包括辐射交联,以提高耐磨性。耐磨性的提高伴随着材料机械性能的折衷。通过伽玛射线辐射交联,将自由基引入材料。需要消除自由基,否则自由基将与人体反应并导致聚合物在体内环境中氧化。为了减轻这些自由基的后处理。此后处理通常由高于或低于UHMWPE熔体温度的热退火处理组成。最近,UHMWPE材料已经从辐照后退火中移开,转而向该材料中添加抗氧化剂。添加这些抗氧化剂,例如维生素E,以在辐照后稳定材料并防止体内操作过程中发生氧化脆化的任何可能性。 UHMWPE的所有这些独特添加物提出了一个重要问题,即如何影响材料的基本机械性能。关于UHMWPE及其某些材料配方的力学性能有大量研究数据,但是当人们深入研究这些研究的程序方法时,就会出现明显的不一致之处;这些不一致之处都在于用于分析和创建材料的过程中机械性能。不同于金属材料,其中分析机械性能的方法已广为人知,而聚合物材料在解释其本构行为时则提出了更为复杂的挑战。当将聚合物材料(例如UHMWPE)用于安全关键型应用(例如TJR)时,这非常重要。当通过组合树脂类型,辐射交联和添加抗氧化剂来定制UHMWPE时,这些挑战将加剧。因此,有必要从方法学的角度回答UHMWPE的力学性能如何随不同材料配方在不同载荷情况下的变化。本文为12种不同材料配方对UHMWPE的力学性能提供了全面而全面的评估。用来分析机械性能的方法如何非常重要。首先,通过差示扫描量热法(DSC)和小角度X射线散射(SAXS)进行全面的微结构分析,以收集微结构数据对机械性能的潜在影响。然后研究了超高分子量聚乙烯及其材料配方的拉伸变形。研究了工程与真实拉伸应力-应变数据,以阐明确定弹性性能,屈服,后屈服和极限行为的分析方法之间的差异。然后将拉伸本构特性与由压缩和纳米压痕确定的特性进行比较,以了解各种测量方法的材料变形趋势。然后将微观结构和拉伸分析应用于确定UHMWPE的弹塑性断裂或J积分韧性行为。最后,本研究以对裂纹扩展机理的机械分析作为结论,以验证断裂韧性方法。

著录项

  • 作者

    Malito, Louis Gregory.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Mechanical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 91 p.
  • 总页数 91
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号