首页> 外文学位 >Atomic and Molecular dynamics in intense mid-infrared fields
【24h】

Atomic and Molecular dynamics in intense mid-infrared fields

机译:中红外强场中的原子和分子动力学

获取原文
获取原文并翻译 | 示例

摘要

In the low optical frequency limit, photoionization processes in atoms and molecules irradiated with intense ultrafast laser fields can be described within the quasi-static tunneling framework. Higher order processes of the photoelectron dynamics were observed and attributed to the recollision of the tunneled electrons. Development of the quantitative rescattering theory laid a foundation for retrieving field-free differential cross section (DCS) from the distribution of rescattered photoelectrons. Due to technological reasons, the majority of strong field physics experiments were carried out at near-infrared wavelengths 0.8 mum or 1 mum. Retrieved DCS' at these wavelengths were not very accurate since these laser frequencies are high and the systems do not strictly satisfy the quasi-static tunneling condition. Here we present the accurate retrieval of noble gas atom DCS' from photoelectron distributions under mid-infrared laser radiation. These lower frequency fields not only result in better quasi-static tunneling initial conditions, but also higher photoelectron recollision energies, core penetrating collisions and improved spatial resolutions, suitable for molecular imaging. Bond lengths of nitrogen and oxygen molecules were extracted from the rescattered photoelectron distributions. This method is called laser-induced electron diffraction (LIED). Alternatively, utilizing the broadband nature of recolliding photoelectrons, bond length of the nitrogen molecule was extracted from a Fourier transform of the backscattered photoelectron spectrum along the laser polarization direction. This is the fixed-angle broadband laser-driven electron scattering (FABLES). Both LIED and FABLES rely on well defined recollision geometries, so molecular alignment is needed to generalize both imaging methods for more complex molecules.;Theoretical and experimental evidence shows that the Coulomb potential of the parent ion can be safely ignored during the high-energy recollisions in LIED and FABLES. However, this is not true for the case of low-energy, small-angle recollisions. Evidence of this is the photoelectron low-energy structure (LES). Soon after the discovery of the LES, theoretical studies attributed its origin to an interplay between the Coulomb field of the parent ion and the electric field of the laser. The type of electron trajectories responsible for the LES are those leading to soft-recollisions, taking place about one and half laser cycles after tunneling ionization. So far, most LES experiments were conducted with multi-cycle pulses where the envelope of the laser electric field is practically constant. Here we present LES measurements with few-cycle laser pulses of various pulse durations. Since in this case the envelope of the laser electric field changes drastically from cycle to cycle and hence during the soft-recollision motion of the LES photoelectrons, changes in the LES peak position as a function of laser pulse duration were expected and observed. Classical trajectory Monte Carlo simulations reproduced experimental data and lead to more insight about the mechanism behind LES. Universal scaling of the LES peak position was also observed, which could be calibrated to obtain in situ measurements of few-cycle mid-infrared laser pulses' duration and carrier-envelope phase offset.
机译:在低光学频率限制下,可以在准静态隧穿框架内描述用强超快激光场照射的原子和分子中的光电离过程。观察到光电子动力学的高阶过程,并归因于隧穿电子的再碰撞。定量散射理论的发展为从散射光电子的分布中检索无场微分截面(DCS)奠定了基础。由于技术原因,大多数强场物理实验都是在0.8 mum或1 mum的近红外波长下进行的。由于这些激光频率很高,并且系统不能严格满足准静态隧穿条件,因此在这些波长下检索到的DCS'不太准确。在这里,我们提出了在中红外激光辐射下从光电子分布中准确检索稀有气体原子DCS'的方法。这些较低的频率场不仅导致更好的准静态隧穿初始条件,而且导致更高的光电子碰撞能量,核穿透碰撞和改进的空间分辨率,适用于分子成像。从再散射的光电子分布中提取出氮和氧分子的键长。这种方法称为激光诱导电子衍射(LIED)。可替代地,利用再碰撞光电子的宽带性质,从沿着激光偏振方向的反向散射光电子谱的傅立叶变换中提取氮分子的键长。这就是定角宽带激光驱动电子散射(FABLES)。 LIED和FABLES都依赖于定义明确的重碰撞几何结构,因此需要分子比对来概括这两种成像方法以获得更复杂的分子。理论和实验证据表明,在高能重碰撞中可以安全地忽略母体离子的库仑电势在谎言和寓言中。但是,对于低能量小角度碰撞来说,情况并非如此。这就是光电子低能结构(LES)的证据。在发现LES之后不久,理论研究将其起源归因于母离子的库仑场与激光电场之间的相互作用。引起LES的电子轨迹类型是导致软碰撞的电子轨迹,发生隧道电离后大约一个半激光周期。到目前为止,大多数LES实验都是使用多周期脉冲进行的,其中激光电场的包络实际上是恒定的。在这里,我们介绍了使用各种脉冲持续时间的少周期激光脉冲进行的LES测量。由于在这种情况下,激光电场的包络线在每个周期之间急剧变化,因此在LES光电子的软碰撞运动期间,可以预期并观察到LES峰值位置随激光脉冲持续时间的变化。古典轨迹的蒙特卡洛模拟再现了实验数据,使人们对LES背后的机理有了更多的了解。还观察到了LES峰位置的通用标度,可以对它进行校准以获得对几个周期的中红外激光脉冲的持续时间和载波包络相位偏移的原位测量。

著录项

  • 作者

    Zhang, Kaikai.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号