首页> 外文学位 >Moving Beyond Worst-Case Power Design in Datacenters - Distributed UPS and Dynamic Voltage Scaling for FPGAs
【24h】

Moving Beyond Worst-Case Power Design in Datacenters - Distributed UPS and Dynamic Voltage Scaling for FPGAs

机译:超越数据中心最坏情况下的电源设计-分布式UPS和FPGA的动态电压调节

获取原文
获取原文并翻译 | 示例

摘要

Millions of datacenters are operating all over the world, consuming up to 3% of the global electricity power and leaving a significant carbon footprint. Due to the uncertainty in the server load profile, most existing power-delivery designs are rated for the worst-case scenario, leading to significant design guard-bands, which results in unnecessary power losses and cost. This thesis addresses two areas that lead to inefficiency in datacenters: 1) unnecessary power losses in the central Uninterruptible Power Supply (UPS), and 2) conservative operation in Field-Programmable Gate Arrays (FPGAs).;The central UPS units in datacenters have a poor efficiency due to their back-to-back architecture, especially at light-load. A novel distributed UPS architecture and control scheme are proposed to provide granular local energy backup and increase the system efficiency. Lithium-Ion Capacitors (LIC) and a bi-directional dc-dc converter are used to provide short-term UPS functionality. A 200-kHz bi-directional multi-phase dc-dc converter operating in Hysteretic Current Mode Control (HCMC) is built to demonstrate the proposed scheme on a server, leading to a 33% reduction in average reactive power for one particular dynamic workload. Datacenter-level behavior is simulated, and the results show that the proposed architecture leads to 75% lower losses in the power delivering path compared to the datacenter with a central UPS.;FPGAs are most commonly operated at their nominal supply voltage, which in most applications is severely conservative. During compilation of the application-specific FPGA design, the Computer-Aided Design (CAD) tool determines the maximum achievable frequency of the user application. This analysis is based on the worst-case timing analysis of the critical path at a fixed nominal voltage, which usually results in significant voltage or frequency margin in a typical chip. Dynamic Voltage Scaling (DVS) has great potential to reduce the power in FPGAs; however, unlike in microprocessors, the critical-path delay of FPGAs is application-dependent, which creates unique challenges for the DVS of FPGAs. To address this issue, a robust universal DVS scheme for FPGAs is demonstrated which includes two phases: offline self-calibration and online DVS. The proposed DVS scheme is demonstrated on a 60-nm Intel Cyclone IV FPGA with a digitally-controlled dc-dc converter, leading to approximately 40% power savings in two typical applications.;Modern FPGAs operate with a core voltage of ∼1 V and can consume tens of Amps, and therefore load-dependent voltage fluctuations can lead to timing violations and logic errors. This is even more critical for DVS operation in FPGAs with limited voltage head-room. For reliable DVS operation of FPGAs, two schemes are presented: 1) automatic extraction of the DC resistance in the Power Delivery Network (PDN) for the resistive voltage drop (IR-drop) compensation, and 2) identification of the high-impedance frequency band(s) in the PDN to avoid large supply voltage ripple caused by the PDN resonance. The embedded impedance extraction tool is synthesized within the FPGA load, in coordination with a mixed-signal current-mode dc-dc converter. Two fully synthesizable self-calibrated Analog-to-Digital Converters (ADCs) are used for core voltage sampling. The proposed schemes are demonstrated on a Cyclone IV FPGA board and real-time IR-drop compensation is shown to eliminate logic errors in an FIR filter application. It is also shown that by modifying the PDN based on the extracted results, the voltage operating range and reliability of a crossbar application is greatly extended.;The new techniques outlined in this thesis should lead to significant energy savings in future datacenters, which can help to increase their power density and reduce their carbon footprints.
机译:全世界有数以百万计的数据中心在运行,消耗了全球3%的电力,并留下了可观的碳足迹。由于服务器负载配置文件的不确定性,大多数现有的电源设计都针对最坏的情况进行了评估,从而导致了很大的设计保护范围,从而导致不必要的功耗和成本。本文针对导致数据中心效率低下的两个方面:1)中央不间断电源(UPS)不必要的功率损耗; 2)现场可编程门阵列(FPGA)中的保守操作。由于它们的背对背架构,效率很低,尤其是在轻负载下。提出了一种新颖的分布式UPS体系结构和控制方案,以提供精细的局部能量备份并提高系统效率。锂离子电容器(LIC)和双向DC-DC转换器用于提供短期UPS功能。构建了一个以迟滞电流模式控制(HCMC)工作的200kHz双向多相DC-DC转换器,以在服务器上演示该方案,从而使一种特定的动态工作负载的平均无功功率降低了33%。模拟了数据中心级别的行为,结果表明,与采用中央UPS的数据中心相比,所提出的体系结构可减少75%的电力输送路径。FPGA最通常在其标称电源电压下工作,这在大多数情况下都是如此。应用程序非常保守。在编译专用FPGA设计时,计算机辅助设计(CAD)工具确定用户应用程序可达到的最大频率。该分析基于在固定标称电压下对关键路径的最坏情况时序分析,这通常会在典型芯片中产生明显的电压或频率裕度。动态电压缩放(DVS)具有降低FPGA功耗的巨大潜力。但是,与微处理器不同,FPGA的关键路径延迟取决于应用程序,这给FPGA的DVS带来了独特的挑战。为了解决这个问题,展示了一种用于FPGA的健壮的通用DVS方案,该方案包括两个阶段:离线自校准和在线DVS。所建议的DVS方案在具有数字控制dc-dc转换器的60纳米Intel Cyclone IV FPGA上进行了演示,在两种典型应用中可节省约40%的功耗。现代FPGA的核心电压约为1 V,而会消耗数十安培的电流,因此与负载有关的电压波动会导致时序违规和逻辑错误。对于具有有限电压裕量的FPGA中的DVS操作而言,这尤其重要。为了使FPGA可靠地进行DVS操作,提出了两种方案:1)自动提取电力传输网络(PDN)中的直流电阻以进行电阻压降(IR-drop)补偿,以及2)识别高阻抗频率PDN中的一个或多个频带,以避免由PDN谐振引起的大电源电压纹波。嵌入式阻抗提取工具在FPGA负载内与混合信号电流模式dc-dc转换器协同工作而合成。两个完全可合成的自校准模数转换器(ADC)用于核心电压采样。在Cyclone IV FPGA板上演示了所建议的方案,并显示了实时IR压降补偿,以消除FIR滤波器应用中的逻辑错误。还表明,通过根据提取的结果修改PDN,可大大扩展交叉开关应用的电压工作范围和可靠性。本文概述的新技术应可在未来的数据中心节省大量能源,这有助于增加功率密度并减少碳足迹。

著录项

  • 作者

    Zhao, Shuze.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号