首页> 外文学位 >Mechanics of Tough Chemically Crosslinked Hydrogels
【24h】

Mechanics of Tough Chemically Crosslinked Hydrogels

机译:坚韧的化学交联水凝胶的力学

获取原文
获取原文并翻译 | 示例

摘要

Double-network (DN) hydrogels developed by Gong et al. (Advanced Materials 2003, 15, 1155) are interesting polymeric materials that despite their large water content (ca. 90 wt%) possess excellent strength and toughness. Those gels can undergo large deformations and exhibit intriguing mechanical behavior such as necking in tensile loading and idealized Mullins effect.;DN hydrogels are the product of free radical polymerization of a water-soluble monomer like acrylamide (AAm) inside a highly crosslinked polyelectrolyte network like poly(2-acrylamido-2-methylpropsnesulfonic acid) [poly(AMPS)]. That polymerization process can be done with or without using a cross-linking monomer. Therefore, DN hydrogels were first thought to be interpenetrating polymer networks (IPNs) or semi-IPNs (SIPNs).;The main objective of this dissertation was to understand the structure-property relationships in DN hydrogels and develop a model to capture their mechanical behavior.;The experimental part of this study involves synthesis and characterization of tough chemically crosslinked hydrogels based on the DN concept and performing mechanical tests on them.;A physical picture was developed to describe necking phenomenon in DN hydrogels. It was found that the necking phenomenon is triggered by the damage of the first network and necking occurs at the onset of load transfer from the first network to the second one. By providing experimental evidence, it was discovered that in DN hydrogels there is a covalent grafting between first and second networks and more importantly that grafting is necessary for achieving toughness. Therefore, DN hydrogels are not true IPN or SIPN structures and depending on whether crosslinking agent is used in the second polymerization step or not, the actual microstructure of a tough DN hydrogel is either a pseudo-IPN or pseudo-SIPN, respectively, where the prefix pseudo denotes connectivity of the two networks.;Crack propagation and finite tensile deformation of DN hydrogels with pseudo-SIPNs and pseudo-IPNs architectures were compared. Moreover, the effect of polymerization of a third loosely crosslinked network inside a DN hydrogel was studied and discussed.;In the theoretical part, a continuum damage model was developed to describe the large strain damage elasto-plastic behavior of DN hydrogels under tensile loading. The model was formulated by developing a physical picture of fracture process and incorporating a damage variable to a strain energy density function. The model is consistent with the experimental data and can capture the elasto-plastic behavior of the material without using a yield function. It was shown that a dimensionless parameter which is a ratio of two material parameters controls the behavior of the material. Those material parameters can be related to the elastic moduli of the first and second networks and in a fundamental level can be attributed to the crosslink densities of the first and second networks. The model can capture the stable branch of material response during necking when the engineering stress becomes constant during neck propagation.
机译:Gong等人开发的双网络(DN)水凝胶。 (Advanced Materials 2003,15,1155)是令人感兴趣的聚合材料,尽管它们的水含量高(约90wt%),但仍具有优异的强度和韧性。这些凝胶会发生很大的变形,并表现出令人感兴趣的机械性能,例如在拉伸载荷中出现颈缩和理想的Mullins效应。DN水凝胶是水溶性单体(如丙烯酰胺)在高度交联的聚电解质网络(例如)内部的自由基聚合产物聚(2-丙烯酰胺基-2-甲基丙磺酸)[聚(AMPS)]。该聚合过程可以在使用或不使用交联单体的情况下进行。因此,DN水凝胶首先被认为是互穿的聚合物网络(IPNs)或半IPNs(SIPNs)。;本论文的主要目的是了解DN水凝胶的结构-性质关系并建立模型以捕获其机械性能。;本研究的实验部分涉及基于DN概念的坚韧化学交联水凝胶的合成和表征,并对其进行机械测试。;开发了一张物理图片来描述DN水凝胶的颈缩现象。发现颈缩现象是由第一网络的损坏触发的,并且在从第一网络到第二网络的负载转移开始时出现颈缩。通过提供实验证据,发现在DN水凝胶中,第一和第二网络之间存在共价接枝,更重要的是,接枝对于获得韧性是必需的。因此,DN水凝胶不是真正的IPN或SIPN结构,并且取决于是否在第二聚合步骤中使用交联剂,坚韧的DN水凝胶的实际微观结构分别是伪IPN或伪SIPN。前缀伪表示两个网络的连通性。比较了具有伪SIPN和伪IPN结构的DN水凝胶的裂纹扩展和有限拉伸变形。此外,研究和讨论了DN水凝胶内部第三个疏松交联网络的聚合作用。该模型是通过绘制断裂过程的物理图并将损伤变量合并到应变能密度函数中来制定的。该模型与实验数据一致,并且可以在不使用屈服函数的情况下捕获材料的弹塑性行为。结果表明,作为两个材料参数之比的无量纲参数控制了材料的行为。这些材料参数可以与第一和第二网络的弹性模量有关,并且在基本水平上可以归因于第一和第二网络的交联密度。当颈缩传播期间工程应力变得恒定时,该模型可以捕获颈缩过程中材料响应的稳定分支。

著录项

  • 作者

    Shams Es-haghi, Siamak.;

  • 作者单位

    The University of Akron.;

  • 授予单位 The University of Akron.;
  • 学科 Materials science.;Mechanics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 339 p.
  • 总页数 339
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号