首页> 外文学位 >Preactivation Glycosylation of Oligosaccharide Molecular Probes for the Investigation of Mycobacterium tuberculosis Enzyme GlgE
【24h】

Preactivation Glycosylation of Oligosaccharide Molecular Probes for the Investigation of Mycobacterium tuberculosis Enzyme GlgE

机译:寡糖分子探针的预活化糖基化研究结核分枝杆菌酶GlgE

获取原文
获取原文并翻译 | 示例

摘要

Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the leading cause of bacterial infection related death in the world. The emergence of extensively drug-resistant tuberculosis (XDR-TB) necessitates the study of Mtb and its enzymes to gain an understanding of its essential biosynthetic pathways to aid in the development and design of drug targets and new classes of inhibitors. Maltosyltransferase GlgE encoded by Mtb is involved in a-glucan biosynthesis, and is a promising drug target due to evidence supporting it is essential for cell viability. Deletion of GlgE results in rapid cell death due to accumulation of its substrate, a-1,4-glucan, maltose-1-phosphate (M1P). Creating a library of substrate analogs could be useful for characterizing the enzyme. This thesis illustrates the preliminary results in synthesizing di-, tetra-, and hexasaccharides in a library of a-1,4-glucan, M1P substrate analogs of TB enzyme GlgE. Subsequent glycosylations combined with the highly convergent nature of our synthetic route will yield longer oligomers that will aid in the investigation of this enzyme. Also discussed are alternative synthetic routes to avoid some unforeseen challenges encountered in the original synthesis. Regardless of the origin of the oligosaccharide probes, gaining an understanding of this biosynthetic pathway will aid in the development drug targets and new classes of inhibitors.
机译:由结核分枝杆菌(Mtb)引起的结核病是世界上与细菌感染相关的死亡的主要原因。广泛耐药结核病(XDR-TB)的出现使人们必须对Mtb及其酶进行研究,以了解其基本的生物合成途径,以帮助开发和设计药物靶标和新型抑制剂。由Mtb编码的麦芽糖基转移酶GlgE参与α-葡聚糖的生物合成,由于有证据表明它对细胞生存力至关重要,因此它是一种很有前途的药物靶标。由于其底物α-1,4-葡聚糖,麦芽糖-1-磷酸(M1P)的积累,GlgE的缺失导致细胞快速死亡。创建底物类似物的库对于表征酶可能有用。本论文说明了在a-1,4-葡聚糖,TB酶GlgE的M1P底物类似物的文库中合成二糖,四糖和六糖的初步结果。随后的糖基化与我们合成路线的高度趋同性相结合,将产生更长的低聚物,这将有助于对该酶的研究。还讨论了替代合成路线,以避免在原始合成中遇到一些不可预见的挑战。无论寡糖探针的来源如何,对这种生物合成途径的了解将有助于开发药物靶标和新型抑制剂。

著录项

  • 作者

    Bouhall, Samantha K.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Chemistry.
  • 学位 M.S.
  • 年度 2015
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号