首页> 外文学位 >Effect of Spin Current on Magnetization Dynamics
【24h】

Effect of Spin Current on Magnetization Dynamics

机译:自旋电流对磁化动力学的影响

获取原文
获取原文并翻译 | 示例

摘要

The main subject of this work is the magnetization dynamics excited in magnetic nanostructures by spin polarized electrical or pure spin current. This research is important for the development of spintronic devices - devices that in addition to the electron charge exploit the spin degree of freedom for information storage, transmission, processing, and/or for sensing. The research presented in this thesis addresses three relevant problems: 1) Enhancing the efficiency of spin current-driven spintronic devices by optimizing their geometry; 2) Enhancing the dynamical characteristics of spin current-driven devices via their interaction with external signals; 3) The role of quantum magnetization fluctuations in the interaction between the magnetization and the spin-polarized current.;An emerging promising type of spintronic devices for microwave applications is the Spin Hall nanooscillator (SHNO). In SHNO, microwave-frequency magnetization dynamics is excited in an "active" nanomagnet by pure spin current generated by the spin Hall effect. In this work, it is shown that spectral, thermal and electrical properties of SHNO can be enhanced by optimizing the geometry of the nanodevice. In particular, increased current concentration in a small region, achieved by nanopatterning the spin-Hall material (the source of spin current), reduces the current required for the device operation. Moreover, the reduced area of interface between the spin Hall material and the active nanomagnet improves the spectral properties of the device. In addition to modifying geometry of spin Hall layer to modify properties of spin Hall nanooscillator. In addition, a new type of SHNO is experimentally demonstrated in this work. It is based on a bilayer of spin Hall material and active layer nanopatterned into a bow-tie nanoconstriction. Theoretical analysis and micromagnetic simulations performed in this work demonstrate the importance of nonlinear dynamical mechanisms, dipolar magnetic fields, and the Oersted field of the current for the spatial and spectral characteristics of the studied structures.;The presented work also addresses the dynamical stability and coherence of SHNO, by studying their interaction with external microwave signals. It is shown that strong dynamical nonlinearity of SHNO is responsible both for their limited coherence and their ability to efficiently synchronize with external microwave signals. The synchronization is shown to dramatically improve the spectral characteristics of SHNO, and is possible in a wide range of temperature and frequencies. The demonstrated synchronization of SHNO opens a way for the development of arrays of mutually synchronized oscillators with improved microwave generation characteristics.;The last part of this work addresses the fundamental mechanisms of interaction between the magnetization and the spin polarized currents. The present understanding of the underlying mechanism, called the spin transfer effect, is based on the classical approximation for the magnetization. In this work, the theory of spin transfer is extended to include the quantum-mechanical description of magnetization. The central result of the presented work is the prediction of spin transfer due to quantum magnetization fluctuation, and its experimental demonstration in a nanomagnetic system. Both the analysis and the presented measurements demonstrate that quantum fluctuations provide the dominant contribution to spin transfer at cryogenic temperatures, and their role remains significant even at room temperatures. Multiple consequences for the magnetoelectronic phenomena in ferromagnetic and antiferromagnetic systems are predicted based on these results.
机译:这项工作的主要主题是通过自旋极化电流或纯自旋电流在磁性纳米结构中激发的磁化动力学。这项研究对于自旋电子器件的开发非常重要-自旋电子器件除电子电荷外还利用自旋自由度进行信息存储,传输,处理和/或传感。本文提出的研究解决了三个相关问题:1)通过优化自旋电流驱动自旋电子器件的几何形状来提高效率; 2)通过自旋电流驱动设备与外部信号的交互作用来增强其动态特性; 3)量子磁化涨落在磁化和自旋极化电流之间相互作用中的作用。用于微波应用的一种新兴的自旋电子器件是自旋霍尔纳米振荡器(SHNO)。在SHNO中,通过自旋霍尔效应产生的纯自旋电流在“有源”纳米磁铁中激发微波频率的磁化动力学。在这项工作中,表明可以通过优化纳米器件的几何形状来增强SHNO的光谱,热和电性能。特别是,通过对自旋霍尔材料(自旋电流源)进行纳米构图,可以在较小区域内增加电流集中度,从而降低了器件工作所需的电流。此外,自旋霍尔材料与活性纳米磁体之间的界面面积的减小改善了器件的光谱特性。除了修改自旋霍尔层的几何形状以修改自旋霍尔纳米振荡器的特性。另外,在这项工作中实验证明了一种新型的SHNO。它基于自旋霍尔材料和有源层的双层纳米结构,该有源层被纳米图案化成领结纳米收缩。这项工作进行的理论分析和微磁模拟证明了非线性动力机制,偶极磁场和电流的奥斯特场对于研究结构的空间和光谱特性的重要性。提出的工作还解决了动力学稳定性和相干性。通过研究它们与外部微波信号的相互作用来实现。结果表明,SHNO的强动力学非线性是其有限的相干性以及它们与外部微波信号有效同步的能力的原因。同步被证明可以显着改善SHNO的光谱特性,并且可以在很宽的温度和频率范围内实现。证明的SHNO同步为开发具有改善的微波产生特性的相互同步的振荡器阵列开辟了一条途径。这项工作的最后一部分探讨了磁化和自旋极化电流之间相互作用的基本机理。对基本机制(称为自旋转移效应)的当前理解是基于磁化的经典近似。在这项工作中,自旋转移理论扩展到包括磁化的量子力学描述。提出的工作的主要结果是对由于量子磁化波动引起的自旋转移的预测,以及在纳米磁系统中的实验演示。分析和提出的测量结果均表明,量子波动在低温下对自旋转移起主要作用,即使在室温下,其作用也仍然很重要。基于这些结果,可以预测铁磁和反铁磁系统中磁电子现象的多种后果。

著录项

  • 作者

    Zholud, Andrei.;

  • 作者单位

    Emory University.;

  • 授予单位 Emory University.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号