首页> 外文学位 >Two-dimensional Nanopore and Nanoporous Devices for Molecular Sensing and Ion Selectivity
【24h】

Two-dimensional Nanopore and Nanoporous Devices for Molecular Sensing and Ion Selectivity

机译:用于分子传感和离子选择性的二维纳米孔和纳米孔器件

获取原文
获取原文并翻译 | 示例

摘要

Nanopore-based devices provide the ability to detect, analyze and manipulate molecules by monitoring changes in ionic current and sieving molecules dissolved in an electrolyte. While devices with single nanopores can be used as molecular sensors and analyzers, including as a possible high-throughput DNA sequencer, devices with multiple nanopores (nanoporous devices) can be used to filter out ions from solutions, with possible use in water desalination. Sensitivity and molecular flux can be enhanced by using two-dimensional (2D) materials, like graphene and transition metal dichalcogenides (TMDs), as the nanopore membrane. However, these devices face challenges yet to be solved, including (a) fast DNA translocation velocity through 2D nanopores that limits temporal resolution required to achieve DNA sequencing, and (b) sensitive fabrication techniques that prevents large-scale commercialization of such devices. Additionally, TMD nanoporous membranes have been predicted to possess higher permeability of water molecules than their graphene counterparts, but no related experiments have been presented. In this dissertation, we explore not only ways to tackle the stated limitations, but also perform ion selectivity measurements through ion-irradiated TMD nanoporous devices.;First, we investigate ionic flow and associated leakage currents in voltage-gated graphene nanopores predicted to help slow down DNA translocation velocity. We extract important parameters that can help reduce leakage currents while enhancing the signal strength and gating control.;Next, we report DNA detection with high sensitivity through monolayer tungsten disulfide (WS2) nanopores fabricated via electron-beam drilling and observe laser irradiation induced expansion of the pore, which we are able to control with nanometer precision. Follow-up experiments are performed, wherein we characterize this technique by irradiating intact suspended WS2 membranes to fabricate nanoporous membranes and measure dependence of the induced defect sizes and density on laser power density. This process can be fine-tuned in future studies to enable facile creation of both nanopores and nanoporous devices based on TMDs.;Additionally, we study and calibrate sub-nm defect formation in suspended molybdenum disulfide membranes using ion-beam irradiation. Ionic current characterization of the devices exhibits selective ionic transport, thus laying experimental foundation for future studies on TMD-based nanoporous devices for water desalination.
机译:基于纳米孔的设备通过监视离子电流的变化并筛分溶解在电解质中的分子,提供了检测,分析和操纵分子的能力。尽管具有单个纳米孔的设备可用作分子传感器和分析仪,包括可能的高通量DNA测序仪,但具有多个纳米孔的设备(纳米孔设备)可用于从溶液中滤出离子,并可能用于水脱盐。通过使用二维(2D)材料(例如石墨烯和过渡金属二卤化金属(TMD))作为纳米孔膜,可以提高灵敏度和分子通量。然而,这些设备面临尚未解决的挑战,包括(a)通过2D纳米孔的快速DNA转运速度,这限制了实现DNA测序所需的时间分辨率,以及(b)防止此类设备大规模商业化的灵敏制造技术。另外,已预测TMD纳米多孔膜比石墨烯对应物具有更高的水分子渗透性,但尚未提出相关实验。本文不仅探讨了解决上述局限性的方法,而且还通过离子辐照的TMD纳米多孔器件进行了离子选择性测量。首先,我们研究了电压门控石墨烯纳米孔中的离子流和相关的泄漏电流,这些电流预计会帮助减缓降低DNA易位速度。我们提取了重要的参数,这些参数可以帮助减少泄漏电流,同时增强信号强度和门控控制。接着,我们报告了通过电子束钻孔制备的单层二硫化钨(WS2)纳米孔以高灵敏度检测DNA的过程,并观察了激光辐照引起的膨胀我们能够以纳米精度控制的孔。进行后续实验,其中我们通过辐照完整的悬浮WS2膜以制造纳米多孔膜并测量诱导缺陷尺寸和密度对激光功率密度的依赖性来表征该技术。可以在以后的研究中对这一过程进行微调,以使基于TMD的纳米孔和纳米多孔器件的创建变得容易。此外,我们使用离子束辐照研究并校准悬浮在二硫化钼膜中的亚纳米缺陷的形成。器件的离子电流表征显示出选择性的离子迁移,因此为基于TMD的用于水脱盐的纳米多孔器件的未来研究奠定了实验基础。

著录项

  • 作者

    Danda, Gopinath.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Electrical engineering.;Nanotechnology.;Engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号