首页> 外文学位 >Characterization of Solvent Effects in Microhydrated Ionic Clusters using Cryogenic Vibrational Spectroscopy
【24h】

Characterization of Solvent Effects in Microhydrated Ionic Clusters using Cryogenic Vibrational Spectroscopy

机译:利用低温振动光谱法表征微水合离子簇中的溶剂效应

获取原文
获取原文并翻译 | 示例

摘要

The molecular level interactions between ionic and neutral species give rise to the macroscopic chemical and physical properties of bulk electrolyte systems. A fundamental knowledge of these interactions facilitates understanding of this behavior and enables rational manipulation of the system at the molecular level. Infrared spectroscopy reveals the vibrational fingerprints that are characteristic of the chemical environments of bonds, making it a powerful tool for characterization of local structure. Standard solution phase and surface-sensitive spectroscopies, however, suffer from the drawback that the spectra contain simultaneous contributions from species in many distinct chemical environments, which also undergo thermal fluctuations over time. Gas-phase vibrational spectroscopy of cryogenically (~l0 K) cooled, mass-selected clusters represents an alternative, "bottom-up" approach for elucidating the underlying chemical physics with a high degree of experimental control over the precise chemical composition and temperature. In this Dissertation, the infrared spectra of ionic clusters generated by electrospray ionization (ESI) and cooled in radiofrequency ion traps are collected in a "messenger-tagging" action spectroscopic scheme referred to as cryogenic ion vibrational predissociation (CIVP). The perturbations induced by the weakly bound molecular adducts (He, H2, N2, etc.) necessary for the acquisition of CIVP spectra are assessed by their effect on the spectrum of the NH4+(H 2O) cation-hydrate. Alternative approaches for acquiring linear action spectra based on multiple laser resonance spectroscopy are demonstrated for the I-(H2O)2 complex and its isotopologues. Gas phase reactions of dinitrogen pentoxide (N2O5) with hydrated halide ions (X = CI, Br, I) are examined, and the observed [XN 2O5]- species are identified as exit channel ion-molecule complexes in the formation of XNO2, which has implications for modeling the atmospheric chemistry of nitrogen oxides. The effects of solvation on ions and ion pairs/complexes can be rigorously studied by forming clusters containing a precise number of solvent molecules around the solute ion. The modulation of the ion-ion and ion-solvent interactions in the binary [M2+CD3CD2COO- ] + (M = Mg, Ca) and ternary [MgSO4Mg]2+ ionic complexes through the first hydration shell are established. In many cases, the clusters can be made sufficiently large that their behavior becomes close to that of the bulk system. This enables a compelling way to extrapolate cluster spectra to understand that of the interfacial or aqueous environment using electronic structure theory and molecular dynamics simulations.
机译:离子和中性物质之间的分子水平相互作用引起了整体电解质系统的宏观化学和物理性质。这些相互作用的基本知识有助于理解这种行为,并能够在分子水平上合理地控制系统。红外光谱揭示了键化学环境特征的振动指纹,使其成为表征局部结构的有力工具。然而,标准溶液相和对表面敏感的光谱学的缺点是,光谱包含许多不同化学环境中物质的同时贡献,这些化学环境也会随时间发生热波动。低温(〜10 K)冷却,质量选择的团簇的气相振动光谱表示一种替代的“自下而上”的方法,该方法通过对精确化学成分和温度的高度实验控制来阐明基础化学物理学。在本论文中,由电喷雾电离(ESI)产生并在射频离子阱中冷却的离子簇的红外光谱是以称为“低温离子振动预分解(CIVP)”的“信使-标记”作用光谱方案进行收集的。通过捕获CIVP光谱所需的弱结合分子加合物(He,H2,N2等)引起的扰动,通过其对NH4 +(H 2O)阳离子水合物光谱的影响进行评估。针对I-(H2O)2配合物及其同位素同位异构体,展示了基于多重激光共振光谱法获取线性作用谱的替代方法。检查了五氧化二氮(N2O5)​​与水合卤化物离子(X = CI,Br,I)的气相反应,并将观察到的[XN 2O5]-物种识别为XNO2形成中的出口通道离子-分子复合物,对模拟氮氧化物的大气化学具有意义。可以通过在溶质离子周围形成包含精确数目的溶剂分子的簇来严格研究溶剂化对离子和离子对/复合物的影响。通过第一水合壳建立了二元[M2 + CD3CD2COO-] +(M = Mg,Ca)和三元[MgSO4Mg] 2+离子络合物中离子-离子和离子-溶剂相互作用的调节。在许多情况下,可以使群集足够大,以使其行为变得接近于大容量系统。这使人们能够使用电子结构理论和分子动力学模拟来推断团簇光谱,以了解界面或水环境的光谱,这是一种引人注目的方法。

著录项

  • 作者

    Kelleher, Patrick Joseph.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Physical chemistry.;Chemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 212 p.
  • 总页数 212
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号