首页> 外文学位 >Accurate deterministic solutions for the classic Boltzmann shock profile.
【24h】

Accurate deterministic solutions for the classic Boltzmann shock profile.

机译:经典Boltzmann冲击轮廓的精确确定性解决方案。

获取原文
获取原文并翻译 | 示例

摘要

The Boltzmann equation or Boltzmann transport equation is a classical kinetic equation devised by Ludwig Boltzmann in 1872. It is regarded as a fundamental law in rarefied gas dynamics. Rather than using macroscopic quantities such as density, temperature, and pressure to describe the underlying physics, the Boltzmann equation uses a distribution function in phase space to describe the physical system, and all the macroscopic quantities are weighted averages of the distribution function. The information contained in the Boltzmann equation is surprisingly rich, and the Euler and Navier-Stokes equations of fluid dynamics can be derived from it using series expansions. Moreover, the Boltzmann equation can reach regimes far from the capabilities of fluid dynamical equations, such as the realm of rarefied gases---the topic of this thesis. Although the Boltzmann equation is very powerful, it is extremely difficult to solve in most situations. Thus the only hope is to solve it numerically. But soon one finds that even a numerical simulation of the equation is extremely difficult, due to both the complex and high-dimensional integral in the collision operator, and the hyperbolic phase-space advection terms. For this reason, until few years ago most numerical simulations had to rely on Monte Carlo techniques. In this thesis I will present a new and robust numerical scheme to compute direct deterministic solutions of the Boltzmann equation, and I will use it to explore some classical gas-dynamical problems. In particular, I will study in detail one of the most famous and intrinsically nonlinear problems in rarefied gas dynamics, namely the accurate determination of the Boltzmann shock profile for a gas of hard spheres.
机译:玻尔兹曼方程或玻尔兹曼输运方程是路德维希·玻尔兹曼在1872年提出的经典动力学方程。它被视为稀有气体动力学的基本定律。玻尔兹曼方程不使用诸如密度,温度和压力之类的宏观量来描述基础物理,而是使用相空间中的分布函数来描述物理系统,并且所有宏观量都是该分布函数的加权平均值。玻尔兹曼方程中包含的信息令人惊讶地丰富,并且可以使用级数展开从中得出流体动力学的欧拉和纳维尔-斯托克斯方程。此外,玻尔兹曼方程还可以达到远离流体动力学方程的能力,例如稀薄气体领域-这是本文的主题。尽管Boltzmann方程非常强大,但在大多数情况下很难解决。因此,唯一的希望是从数字上解决它。但是很快,人们发现,由于碰撞算子中复杂的高维积分以及双曲相空间对流项,对方程进行数值模拟也非常困难。因此,直到几年前,大多数数值模拟都必须依靠蒙特卡洛技术。在本文中,我将提出一个新的健壮的数值方案来计算Boltzmann方程的直接确定性解,并将用它来探讨一些经典的气体动力学问题。特别是,我将详细研究稀有气体动力学中最著名的,本质上是非线性的问题之一,即精确确定硬球体气体的玻耳兹曼冲击剖面。

著录项

  • 作者

    Yue, Yubei.;

  • 作者单位

    City University of New York.;

  • 授予单位 City University of New York.;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号