首页> 外文学位 >Light driven reduction of carbon dioxide via ruthenium polypyridyl complexes in the presence of a pyridinium cocatalyst.
【24h】

Light driven reduction of carbon dioxide via ruthenium polypyridyl complexes in the presence of a pyridinium cocatalyst.

机译:在吡啶鎓助催化剂存在下,通过钌聚吡啶配合物进行光驱还原二氧化碳。

获取原文
获取原文并翻译 | 示例

摘要

The rapid increase in atmospheric carbon dioxide since the industrial revolution is now beginning to cause global climate changes which could adversely affect our planets ecosystem. Nonetheless, our ability to sustain the current world population and standard of living relies on cheap and abundant energy which is only currently obtainable from the continued use of fossil fuels, which further add CO2 to the atmosphere. Given these circumstances, there is considerable interest and urgency in the development of new technology which would help us replace fossil fuels with fuels derived from sustainable energy sources, and in particular, the sun. In particular, a process for the solar-driven reduction of CO2 into useful liquid transportation fuels, such as methanol, could lead to a carbon-neutral fuel cycle and eliminate the need for fossil fuels. If photochemical processes are to be developed along these lines, the incident solar radiation, which is predominantly in the visible portion of the electromagnetic spectrum, must be effectively absorbed by photocatalysts which then go on to drive the desired reactions.;Ru(II) and Re(II) transition metal complexes are among the most widely studied chromophores for solar fuel photochemical processes. In particular, [Ru(phen)3]2+ Ru(bpy)3]2+, [Ru(tpy) 2]2+, and more recently [Ru(bqp)2] 2+ (where bpy = 2,2'-bipyridine, tpy = 2,2':6',2''-terpyridine, and bqp = 2,6-di(quinolin-8-yl)pyridyl) have enjoyed considerable attention due to their good chemical stability and promising photophysical properties, including good absorption in the visible and long lived 3MLCT states. In this thesis, these complexes were studied computationally to determine what factors affect their excited state lifetimes, which are seen to vary from 0.25 ns to 3 [special character omitted]s. Previous researchers have proposed an electronic model in which thermal population of triplet metal centered states from the 3MLCT state is the key factor in determining excited state lifetime. The closer in energy that the two excited states are, the faster is the non-radiative decay. In this study, we examine the structural features including ligand structure, denticity, metal-ligand bond angles, and deviations from octahedral geometry and correlate these factors to the excited state lifetime, in view of the existing electronic model. The calculations show that the HOMO is metal centered (t2g in Oh) whereas the LUMO is ligand centered ([special character omitted]*) The LUMO+1 has mixed ligand [special character omitted]* and metal eg character, the extent of which depends strongly on the degree of distortion from Oh symmetry, as measured by the bond angles about the metal center. The greater the degree of distortion, the greater the eg character of the LUMO+1 and also the closer in energy it is to the LUMO. Thermal population of energetically similar excited states [(t2g5 -- [special character omitted]*1 (LUMO)] and [t2g5 -- ([special character omitted]*+eg)1 (LUMO+1)] provides an alternative non-radiative pathway for vibrationally returning to the ground state via population of a state that has appreciable metal d-d character. Overall, this electronic description of the molecule provides an accurate mechanistic understanding of the dominant non-radiative decay pathway.;In chapter 2, we report on the use of [Ru(bpy)3]2+ and [Ru(bqp)2]2+ as chromophores for the photocatalytic reduction of CO2 to methanol using pyridinium co-catalysts. Bocarsly and coworkers have shown that a mixture of pyridine and pyridinium in water (pH 5.5) is an effective electrocatalytic system for CO2 reduction to methanol. In 2013 MacDonnell and coworkers, reported that the pyridine/pyridinium CO2 reduction chemistry could be driven photochemically using [Ru(phen)3]2+ as a co-catalsyt. In this chapter, this photochemical activity is examined with the related [Ru(bpy)3] 2+, and the [Ru(bqp)2]2+ chromophores, which are expected to show improved activity due to improved cage escape yields and longer excited state lifetimes, respectively. The bipyridine system produced 83+/-6 muM (0.4 TON) of methanol which was an increase of 20 muM from the control while it produced a very small amount of formate until roughly 4 hours had elapsed. It is possible for formate to enter the catalytic cycle and be reduced to methanol. The photocatalytic system using [Ru(bqp) 2]2+ as a chromophore produced 40 muM (0.7 TON) of methanol with a reduced starting concentration.
机译:自工业革命以来,大气中二氧化碳的迅速增加现在开始引起全球气候变化,这可能会对我们的星球生态系统产生不利影响。但是,我们维持当前世界人口和生活水平的能力依赖于廉价和丰富的能源,而这些能源目前只能通过持续使用化石燃料获得,化石燃料进一步向大气中添加二氧化碳。在这种情况下,对开发新技术的兴趣和紧迫性将有助于我们用可持续能源特别是太阳产生的燃料替代化石燃料。特别地,将太阳能驱动的二氧化碳减少为有用的液体运输燃料(例如甲醇)的方法可能导致碳中性燃料循环并消除对化石燃料的需求。如果要沿着这些路线发展光化学过程,则主要是在电磁波谱可见部分的入射太阳辐射必须被光催化剂有效吸收,然后继续推动所需的反应。 Re(II)过渡金属配合物是太阳能燃料光化学过程中研究最广泛的生色团之一。特别是[Ru(phen)3] 2+ Ru(bpy)3] 2 +,[Ru(tpy)2] 2+,以及最近的[Ru(bqp)2] 2+(其中bpy = 2,2 '-联吡啶,tpy = 2,2':6',2''-吡啶和bqp = 2,6-二(喹啉-8-基)吡啶基)由于其良好的化学稳定性和光物理前景而备受关注特性,包括在可见光和长寿命3MLCT状态下的良好吸收。在本文中,对这些配合物进行了计算研究,以确定哪些因素会影响其激发态寿命,这些因素的变化范围为0.25 ns至3 [省略特殊字符]。先前的研究人员提出了一种电子模型,其中从3MLCT态出发的三重态金属中心态的热态填充是确定激发态寿命的关键因素。两种激发态的能量越接近,非辐射衰减越快。在这项研究中,我们检查了结构特征,包括配体结构,密度,金属-配体键角以及与八面体几何形状的偏差,并根据现有的电子模型将这些因素与激发态寿命相关联。计算表明,HOMO以金属为中心(t2g in Oh),而LUMO以配体为中心([特殊字符省略] *)LUMO + 1具有混合的配体[省略特殊字符] *和金属(例如字符),其程度高度依赖于Oh对称性引起的变形程度,该程度由围绕金属中心的键角测得。失真程度越大,LUMO + 1的特性就越大,并且其能量也更接近LUMO。能量相似的激发态[[t2g5-[省略特殊字符] * 1(LUMO)]和[t2g5-([省略特殊字符] * + eg)1(LUMO + 1)]的热填充提供了另一种非-通过具有可疑金属dd特性的态的种群振动返回基态的辐射途径总体而言,这种分子的电子描述提供了对主要的非辐射衰变途径的准确机理的理解。 Bocarsly和同事的研究表明,使用[Ru(bpy)3] 2+和[Ru(bqp)2] 2+作为发色团使用吡啶鎓助催化剂将二氧化碳光催化还原为甲醇的研究。水中的吡啶鎓(pH 5.5)是一种有效的电催化系统,用于将CO2还原为甲醇。2013年MacDonnell及其同事报道,可以使用[Ru(phen)3] 2+作为化合物的光化学方法来驱动吡啶/吡啶的CO2还原化学反应。 -catalsyt。在本章中,此照片通过相关的[Ru(bpy)3] 2+和[Ru(bqp)2] 2+发色团检查了拟南芥的活性,分别由于提高的笼逃逸率和更长的激发态寿命而预期显示出更高的活性。 。联吡啶系统产生83 +/- 6μM(0.4 TON)的甲醇,比对照增加了20μM,而它产生的甲酸盐量非常少,直到大约4小时为止。甲酸可能进入催化循环并被还原为甲醇。使用[Ru(bqp)2] 2+作为生色团的光催化系统产生了40μM(0.7 TON)的甲醇,起始浓度降低。

著录项

  • 作者

    West, Matthew.;

  • 作者单位

    The University of Texas at Arlington.;

  • 授予单位 The University of Texas at Arlington.;
  • 学科 Inorganic chemistry.;Chemistry.;Physical chemistry.
  • 学位 M.S.
  • 年度 2015
  • 页码 55 p.
  • 总页数 55
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号