首页> 外文学位 >Application-oriented Coil Design in Wireless Charging Systems
【24h】

Application-oriented Coil Design in Wireless Charging Systems

机译:无线充电系统中面向应用的线圈设计

获取原文
获取原文并翻译 | 示例

摘要

The concept of wireless power is originated from Heinrich Hertz and well known by the work of Nikola Tesla. Magnetic resonance-based wireless power transfer has been widely applied in charging biomedical implants, consumer electronics, electric vehicles, and lightweight autonomous underwater vehicles due to its convenience and reliability. As a core part of a wireless charging system, coil design is of great importance. This dissertation will introduce four coil designs based on the applications of wirelessly charging electric vehicles and lightweight autonomous underwater vehicles.;Chapter 2 proposes an integrated coil design for bipolar coils in EV wireless chargers using LCC compensation topology, which simplifies the design, makes the system more compact, and increases the system power density. Finite element analysis by ANSYS MAXWELL is conducted to verify the proposed idea. In addition, a design method on improving system efficiency is given and experimental results demonstrate that wireless charging system with the proposed integrated coil design can transfer 3.0 kW at a DC-DC efficiency of 95.5%.;Chapter 3 extends the work of Chapter 2 and presents another integrated coil design which is compatible with unipolar coils in EV wireless chargers using LCC compensation topology. The aspect ratios of the compensated coils are study in ANSYS MAXWELL to minimize the extra cross-side coupling coefficient. A wireless charging with the proposed integrated coil design is built to achieve 3.0 kW power transfer at a DC-DC efficiency of 95.5%. Furthermore, a comparative study of the two wireless charging systems in Chapters 2 and 3 are conducted, and the results show the wireless charging system in Chapter 3 has competitive performance in fully aligned and door-to-door misaligned cases, and superior performance in vertical and front-to-rear misaligned cases.;Chapter 4 puts forward a three-phase coil design for lightweight autonomous underwater vehicles. Finite element analysis shows the proposed coil structure has concentrated magnetic fields, which have less adverse effects on the instrumentations within the AUV. A compensation method is presented and a three-phase wireless charging system is built to transfer 1.0 kW at a DC-DC efficiency of 92.41%.;Chapter 5 proposes a rotation-resilient coil design with a two-part reversely wound receiver for lightweight autonomous underwater vehicles in order to achieve a constant power transfer over rotational misalignment. Finite element analysis is performed to verify the proposed coil design and a mesh-current method is applied in analyzing the circuit. A wireless charging system is built to deliver 745 W at a DC-DC efficiency of 86.19% when the system is fully aligned, and efficient under worst-case rotational misalignment.
机译:无线电源的概念起源于海因里希·赫兹(Heinrich Hertz),并因尼古拉·特斯拉(Nikola Tesla)的工作而闻名。基于磁共振的无线电力传输由于其便利性和可靠性而已广泛应用于为生物医学植入物,消费电子产品,电动汽车和轻型自动水下汽车充电。作为无线充电系统的核心部分,线圈设计非常重要。本文将基于无线充电电动汽车和轻型自动水下航行器的应用,介绍四种线圈设计。第二章提出了一种采用LCC补偿拓扑的电动汽车无线充电器双极性线圈的集成线圈设计,简化了设计,使系统成为可能。更紧凑,并增加了系统功率密度。 ANSYS MAXWELL进行了有限元分析,以验证所提出的想法。此外,给出了一种提高系统效率的设计方法,实验结果表明,采用所提出的集成线圈设计的无线充电系统可以以95.5%的DC-DC效率传输3.0 kW的功率。第三章扩展了第二章的工作,提出了另一种集成线圈设计,该设计与使用LCC补偿拓扑的EV无线充电器中的单极性线圈兼容。在ANSYS MAXWELL中研究了补偿线圈的纵横比,以最大程度地减少额外的交叉侧耦合系数。构建具有建议的集成线圈设计的无线充电功能,以95.5%的DC-DC效率实现3.0 kW的功率传输。此外,对第2章和第3章中的两个无线充电系统进行了比较研究,结果表明,第3章中的无线充电系统在完全对齐和门到门未对齐的情况下具有竞争性能,而在垂直对齐情况下则具有出色的性能。第四章提出了一种用于轻型自动水下航行器的三相线圈设计。有限元分析表明,所提出的线圈结构具有集中的磁场,这对AUV内的仪器的不良影响较小。提出了一种补偿方法,并构建了一个三相无线充电系统,以92.41%的DC-DC效率传输1.0 kW .;第5章提出了一种旋转弹性线圈设计,包括两部分反向缠绕的接收器,用于轻量级自主水下航行器,以便在旋转未对准时实现恒定的动力传递。进行了有限元分析,以验证所提出的线圈设计,并采用网格电流法分析电路。构建无线充电系统时,当系统完全对准时,可以以86.19%的DC-DC效率提供745 W功率,在最坏情况下的旋转未对准情况下,效率很高。

著录项

  • 作者

    Kan, Tianze.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号