首页> 外文学位 >Spectroscopic characterization of iron-doped II-VI compounds for laser applications.
【24h】

Spectroscopic characterization of iron-doped II-VI compounds for laser applications.

机译:激光应用中掺杂铁的II-VI化合物的光谱表征。

获取原文
获取原文并翻译 | 示例

摘要

The middle Infrared (mid-IR) region of the electromagnetic spectrum between 2 and 15 ?m has many features which are of interest to a variety of fields such as molecular spectroscopy, biomedical applications, industrial process control, oil prospecting, free-space communication and defense-related applications. Because of this, there is a demand for broadly tunable, laser sources operating over this spectral region which can be easily and inexpensively produced. II-VI semiconductor materials doped with transition metals (TM) such as Co 2+, Cr2+, or Fe2+ exhibit highly favorable spectroscopic characteristics for mid-IR laser applications. Among these TM dopants, Fe2+ has absorption and emission which extend the farthest into the longer wavelength portion of the mid-IR. Fe2+:II-VI crystals have been utilized as gain elements in laser systems broadly tunable over the 3-5.5 microm range [1] and as saturable absorbers to Q -switch [2] and mode-lock [3] laser cavities operating over the 2.7-3 microm. TM:II-VI laser gain elements can be fabricated inexpensively by means of post-growth thermal diffusion with large homogeneous dopant concentration and good optical quality[4,5]. The work outlined in this dissertation will focus on the spectroscopic characterization of TM-doped II-VI semiconductors. This work can be categorized into three major thrusts: 1) the development of novel laser materials, 2) improving and extending applications of TM:II-VI crystals as saturable absorbers, and 3) fabrication of laser active bulk crystals.;Because current laser sources based on TM:II-VI materials do not cover the entire mid-IR spectral region, it is necessary to explore novel laser sources to extend available emissions toward longer wavelengths. The first objective of this dissertation is the spectroscopic characterization of novel ternary host crystals doped with Fe2+ ions. Using crystal field engineering, laser materials can be prepared with emissions placed in spectral regions not currently covered by available sources while maintaining absorption which overlaps with available pump sources. Because optimization of these materials requires extensive experimentation, a technique to fabricate and characterize novel crystals in powder form was developed, eliminating the need for the crystal growth. Powders were characterized using Raman, photoluminescence studies, and kinetics of luminescence. The first demonstration of random lasing of Fe:ZnCdTe powder at 6 microm was reported. These results show promise for the development of these TM-doped ternary II-VI compounds as laser gain media operating at 6 microm and longer.;The second major objective was to study the performance of TM:II-VI elements as saturable absorber Q-switches and mode-lockers in flash lamp pumped Er:YAG and Er:Cr:YSGG cavities. Different cavity schemes were arranged to eliminate depolarization losses and improve Q-switching performance in Er:YAG and the first use of Cr:ZnSe to passively Q -switch an Er:Cr:YSGG cavity was demonstrated.;While post-growth thermal diffusion is an effective way to prepare large-scale highly doped TM:II-VI laser elements, the diffusion rate of some ions into II-VI semiconductors is too low to make this method practical for large crystals. The third objective was to improve the rate of thermal diffusion of iron into II-VI semiconductor crystals by means of gamma-irradiation during the diffusion process. When exposed to a dose rate of 44 R/s during the diffusion process, the diffusion coefficient for Fe into ZnSe showed improvement of 60% and the diffusion coefficient of Fe into ZnS showed improvement of 30%.
机译:2至15 µm电磁波谱的中间红外(mid-IR)区具有许多功能,这些功能在分子光谱,生物医学应用,工业过程控制,石油勘探,自由空间通信等各个领域都非常有用与国防相关的应用。因此,需要在该光谱区域上操作的可广泛调谐的激光源,该激光源可容易且廉价地生产。掺杂有过渡金属(TM)(例如Co 2 +,Cr2 +或Fe2 +)的II-VI半导体材料对中红外激光应用具有非常有利的光谱特性。在这些TM掺杂剂中,Fe2 +具有吸收和发射,吸收和发射最远延伸到中红外的较长波长部分。 Fe2 +:II-VI晶体已被用作可在3-5.5微米范围内广泛调谐的激光系统中的增益元件[1],以及用作在该激光器上工作的Q开关[2]和锁模[3]的饱和吸收体。 2.7-3微米。 TM:II-VI激光增益元件可以通过生长后的热扩散廉价地制造,具有大的均匀掺杂剂浓度和良好的光学质量[4,5]。本论文概述的工作将集中于掺杂TM的II-VI半导体的光谱表征。这项工作可以归为三个主要方面:1)新型激光材料的开发; 2)改善和扩展TM:II-VI晶体作为可饱和吸收剂的应用;以及3)激光活性块状晶体的制造。以TM:II-VI材料为基础的光源不能覆盖整个中红外光谱区域,因此有必要探索新颖的激光源,以将可用的发射方向扩展到更长的波长。本文的首要目的是对掺有Fe2 +离子的新型三元基质晶体进行光谱表征。通过使用晶体场工程,可以制备激光材料,并将其发射置于当前未被可用光源覆盖的光谱区域,同时保持与可用泵浦光源重叠的吸收。由于这些材料的优化需要大量的实验,因此开发了一种制造和表征粉末状新型晶体的技术,从而消除了晶体生长的需要。使用拉曼,光致发光研究和发光动力学来表征粉末。首次报道了在6微米处随机发射激光的Fe:ZnCdTe粉末。这些结果显示出有望开发出这些掺有TM的三元II-VI化合物作为工作在6微米或更长时间的激光增益介质。第二个主要目标是研究TM:II-VI元素作为可饱和吸收剂Q-的性能闪光灯泵浦的Er:YAG和Er:Cr:YSGG空腔中的开关和锁模器。布置了不同的腔方案以消除去极化损耗并改善Er:YAG中的Q转换性能,并证明了首次使用Cr:ZnSe被动地Q转换Er:Cr:YSGG腔。作为制备大规模高掺杂TM:II-VI激光元件的有效方法,某些离子向II-VI半导体中的扩散速率太低,无法使这种方法适用于大晶体。第三个目的是在扩散过程中通过伽马辐照提高铁向II-VI半导体晶体的热扩散速率。当在扩散过程中暴露于44 R / s的剂量率时,Fe在ZnSe中的扩散系数显示出60%的改善,Fe在ZnS中的扩散系数显示出30%的改善。

著录项

  • 作者

    Martinez, Alan.;

  • 作者单位

    The University of Alabama at Birmingham.;

  • 授予单位 The University of Alabama at Birmingham.;
  • 学科 Materials science.;Optics.;Physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号