首页> 外文学位 >A home-based rehabilitation system for deficient knee patients.
【24h】

A home-based rehabilitation system for deficient knee patients.

机译:膝关节虚弱患者的家庭康复系统。

获取原文
获取原文并翻译 | 示例

摘要

The Smart Health paradigm has opened up immense possibilities for designing cyber-physical systems with integrated sensing and analysis for data-driven healthcare decision-making. Clinical motor-rehabilitation has traditionally tended to entail labor-intensive approaches with limited quantitative methods and numerous logistics deployment challenges. We believe such labor-intensive rehabilitation procedures offer a fertile application field for robotics and automation technologies which is easily applicable to home-based rehabilitation system.;Our long-term goal is the creation, analysis and validation of a Home-based Rehabilitation Framework comprised of quantitative human subject measurement technologies, an adjustable smart brace coupled with an integrated PC-based control system to enhance rehabilitation process for deficient knee patient.;Human motion-capture and computational analysis tools have played a significant role in a variety of product-design and ergonomics settings for over a quarter-century. However, there exist significant differences in the capabilities and ease-of-use between these tools thus we perform comparative analysis of motion data from two alternate human motion-capture systems (high-resolution Vicon vs low-resolution Kinect). In addition to traditional resolution/accuracy study, data for multiple trials of motions were captured and examined to verify motion capture fidelity and the role of pre- and post-processing (calibration and estimation). In our work, we adapt Principal Component Analysis (PCA) approaches and K-Nearest Neighbors (K-NN) method for subject classification.;Knee bracing has been used to realize a variety of functional outcomes in both sport and rehabilitation application. Traditionally, the design of exoskeletons (from choice of configuration to selection of parameters) as well as the process of fitting this exoskeleton (to the individual user/patient) has largely depended on intuition and/or practical experience of a designer/physiotherapist. However, improper exoskeleton design and/or incorrect fitting can cause buildup of significant residual forces/torques (both at joint and fixation site). Performance can be further compromised by the innate complexity of human motions and need to accommodate the immense individual variability (in terms of patient--anthropometrics, motion--envelopes and musculoskeletal--strength). In our work, we propose a systematic and quantitative methodology to evaluate various alternate exoskeleton designs using kinetostatic design optimization and twist-/wrench- based modeling and analysis. This process is applied in the context of a case-study for developing optimal configuration and fixation of a knee brace/exoskeleton. An optimized knee brace is prototyped using 3D printing and physically tested.;Recent research on exoskeletons has examined ways of improving flexibility, wearability as well as reducing overall weight. Very few exoskeletal systems, however, have succeeded in satisfying all these criteria due to the complexities engaged in human joint motions and loading. Compliant mechanisms offer a class of articulated multibody systems that allow relatively stiff but lightweight solutions for exoskeleton/braces. In our study, we introduce Parallel Coupled Compliant plate (PCCP) mechanism and Pennate Elastic Band (PEB) spring architecture and evaluate them. PCCP/PEB system provides both flexibility and extreme stiffness to user with respect to posture/angle of knee joint. The performance of PCCP/PEB system was verified by 3D printed physical exoskeleton prototype.;The overall human subject measurement and adjustable smart brace controller are integrated within a Matlab based acquisition, analysis and control framework. Motion measured by low-cost devices (Kinect and Wii Balance Board) was used to calculate load at knee joint then the smart knee brace automatically adjusted parameters of brace to control load at the knee joint based on prescription by therapist or doctor.
机译:智能健康范例为设计具有集成感应和分析功能的网络物理系统提供了无限可能,从而可以进行数据驱动的医疗决策。传统上,临床运动康复往往需要采用劳动密集型方法,而定量方法有限,并且在物流部署方面面临诸多挑战。我们认为,此类劳动密集型的康复程序为机器人技术和自动化技术提供了肥沃的应用领域,可轻松应用于基于家庭的康复系统;我们的长期目标是创建,分析和验证基于家庭的康复框架,其中包括的定量人体测量技术,可调节的智能支架与集成的基于PC的控制系统相结合,可增强膝关节功能不全患者的康复过程。人类动作捕捉和计算分析工具在各种产品设计中发挥了重要作用和超过25年的人体工程学设置。但是,这些工具之间在功能和易用性方面存在显着差异,因此我们对来自两个备用人类运动捕捉系统(高分辨率Vicon与低分辨率Kinect)的运动数据进行了比较分析。除了传统的分辨率/准确性研究之外,还捕获并检查了多次运动试验的数据,以验证运动捕获的保真度以及预处理和后处理(校准和估计)的作用。在我们的工作中,我们采用主成分分析(PCA)方法和K最近邻(K-NN)方法进行主题分类。护膝已被用于在运动和康复应用中实现各种功能结果。传统上,外骨骼的设计(从配置选择到参数选择)以及该外骨骼的安装过程(针对单个用户/患者)在很大程度上取决于设计者/物理治疗师的直觉和/或实践经验。但是,不正确的外骨骼设计和/或不正确的安装会导致显着的残余力/扭矩(在关节和固定部位均会累积)。人为运动的先天复杂性可能会进一步影响性能,并且需要适应巨大的个体可变性(就患者-人体测量学,运动-信封和肌肉骨骼-强度而言)。在我们的工作中,我们提出了一种系统和定量的方法,以使用动静设计优化以及基于扭曲/扳手的建模和分析来评估各种备选外骨骼设计。在案例研究的背景下应用此过程,以开发护膝/外骨骼的最佳配置和固定方式。优化的护膝使用3D打印制作原型并经过物理测试。;对外骨骼的最新研究已经研究了改善柔韧性,耐磨性以及减轻整体重量的方法。但是,由于人体关节运动和负荷的复杂性,很少有骨骼外系统能够成功满足所有这些标准。顺应性机构提供了一类铰接式多体系统,可为外骨骼/支架提供相对刚性但轻巧的解决方案。在我们的研究中,我们介绍了平行耦合柔性板(PCCP)机构和Pennate弹性带(PEB)弹簧架构,并对它们进行了评估。 PCCP / PEB系统在膝关节的姿势/角度方面为用户提供了灵活性和极高的刚性。 PCCP / PEB系统的性能已通过3D打印的物理外骨骼原型进行了验证。总体人体测量和可调式智能支撑控制器集成在基于Matlab的采集,分析和控制框架中。使用低成本设备(Kinect和Wii平衡板)测量的运动来计算膝关节的负荷,然后智能膝部支架根据治疗师或医生的处方自动调整支架的参数,以控制膝关节的负荷。

著录项

  • 作者

    Jun, Seungkook.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Robotics.;Biomechanics.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 150 p.
  • 总页数 150
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号