首页> 外文学位 >Fundamental problems in porous materials: Experiments & computer simulation.
【24h】

Fundamental problems in porous materials: Experiments & computer simulation.

机译:多孔材料的基本问题:实验和计算机仿真。

获取原文
获取原文并翻译 | 示例

摘要

Porous materials have attracted massive scientific and technological interest because of their extremely high surface-to-volume ratio, molecular tunability in construction, and surface-based applications. Through my PhD work, porous materials were engineered to meet the design in selective binding, self-healing, and energy damping. For example, crystalline MOFs with pore size spanning from a few angstroms to a couple of nanometers were chemically engineered to show 120 times more efficiency in binding of large molecules. In addition, we found building blocks released from those crystals can be further patched back through a healing process at ambient and low temperatures down to -56 °C. When building blocks are replaced with graphenes, ultra-flyweight aerogels with pore size larger than 100 nm were made to delay shock waves. More stable rigid porous metal with larger pores (~um) was also fabricated, and its performance and survivability are under investigation. Aside from experimental studies, we also successfully applied numerical simulations to study the mutual interaction between the nonplanar liquid-solid interface and colloidal particles during the freezing of the colloidal suspensions. Colloidal particles can be either rejected or engulfed by the evolving interface depending on the freezing speed and strength of interface-particle interaction. Our interactive simulation was achieved by programming both simulation module and visualization module on high performance GPU devices.
机译:多孔材料因其极高的表面体积比,建筑中的分子可调性以及基于表面的应用而吸引了巨大的科学技术兴趣。通过我的博士工作,对多孔材料进行了设计,使其在选择性粘合,自修复和能量衰减方面达到了设计要求。例如,化学工程方法将孔径从几埃到几纳米的晶体MOF进行化学处理,显示出与大分子结合的效率提高了120倍。此外,我们发现从这些晶体中释放出的构建基块可以在环境温度和低至-56°C的低温下通过修复过程进一步修补。当用石墨烯代替结构单元时,制造了孔径大于100 nm的超轻量级气凝胶,以延迟冲击波。还制造了具有更大孔(〜um)的更稳定的刚性多孔金属,其性能和生存能力正在研究中。除了实验研究之外,我们还成功地应用了数值模拟来研究胶体悬浮液冻结过程中非平面液固界面与胶体颗粒之间的相互作用。胶体颗粒可以被演化的界面排斥或吞噬,这取决于界面颗粒间相互作用的冻结速度和强度。通过在高性能GPU设备上对仿真模块和可视化模块进行编程,可以实现我们的交互式仿真。

著录项

  • 作者

    Xu, Zhanping.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Materials science.;Engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号