首页> 外文学位 >CMOS Signal Synthesizers for Emerging RF-to-Optical Applications.
【24h】

CMOS Signal Synthesizers for Emerging RF-to-Optical Applications.

机译:新兴的射频到光学应用的CMOS信号合成器。

获取原文
获取原文并翻译 | 示例

摘要

The need for clean and powerful signal generation is ubiquitous, with applications spanning the spectrum from RF to mm-Wave, to into and beyond the terahertz-gap. RF applications including mobile telephony and microprocessors have effectively harnessed mixed-signal integration in CMOS to realize robust on-chip signal sources calibrated against adverse ambient conditions. Combined with low cost and high yield, the CMOS component of hand-held devices costs a few cents per part per million parts. This low cost, and integrated digital processing, make CMOS an attractive option for applications like high-resolution imaging and ranging, and the emerging 5-G communication space. RADAR techniques when expanded to optical frequencies can enable micrometers of resolution for 3D imaging. These applications, however, impose upto 100x more exacting specifications on power and spectral purity at much higher frequencies than conventional RF synthesizers.;This generation of applications will present unconventional challenges for transistor technologies---whether it is to squeeze performance in the conventionally used spectrum, already wrung dry, or signal generation and system design in the relatively emptier mm-Wave to sub-mmWave spectrum, much of the latter falling in the "Terahertz Gap". Indeed, transistor scaling and innovative device physics leading to new transistor topologies have yielded higher cut-off frequencies in CMOS, though still lagging well behind SiGe and III-V semiconductors. To avoid multimodule solutions with functionality partitioned across different technologies, CMOS must be pushed out of its comfort zone, and technology scaling has to have accompanying breakthroughs in design approaches not only at the system but also at the block level. In this thesis, while not targeting a specific application, we seek to formulate the obstacles in synthesizing high frequency, high power and low noise signals in CMOS and construct a coherent design methodology to address them. Based on this, three novel prototypes to overcome the limiting factors in each case are presented. The first half of this thesis deals with high frequency signal synthesis and power generation in CMOS. Outside the range of frequencies where the transistor has gain, frequency generation necessitates harmonic extraction either as harmonic oscillators or as frequency multipliers. We augment the traditional maximum oscillation frequency metric ( fmax), which only accounts for transistor losses, with passive component loss to derive an effective fmax metric. We then present a methodology for building oscillators at this fmax, the Maximum Gain Ring Oscillator. Next, we explore generating large signals beyond fmax through harmonic extraction in multipliers. Applying concepts of waveform shaping, we demonstrate a Power Mixer that engineers transistor nonlinearity by manipulating the amplitudes and relative phase shifts of different device nodes to maximize performance at a specific harmonic beyond device cut-off.;The second half proposes a new architecture for an ultra-low noise phase-locked loop (PLL), the Reference-Sampling PLL. In conventional PLLs, a noisy buffer converts the slow, low-noise sine-wave reference signal to a jittery square-wave clock against which the phase of a noisy voltage-controlled oscillator (VCO) is corrected. We eliminate this reference buffer, and measure phase error by sampling the reference sine-wave with the 50x faster VCO waveform already available on chip, and selecting the relevant sample with voltage proportional to phase error. By avoiding the N-squared multiplication of the high-power reference buffer noise, and directly using voltage-mode phase error to control the VCO, we eliminate several noisy components in the controlling loop for ultra-low integrated jitter for a given power consumption. Further, isolation of the VCO tank from any varying load, unlike other contemporary divider-less PLL architectures, results in an architecture with record performance in the low-noise and low-spur space.;We conclude with work that brings together concepts developed for clean, high-power signal generation towards a hybrid CMOS-Optical approach to Frequency-Modulated Continuous-Wave (FMCW) Light-Detection-And-Ranging (LIDAR). Cost-effective tunable lasers are temperature-sensitive and have nonlinear tuning profiles, rendering precise frequency modulations or 'chirps' untenable. Locking them to an electronic reference through an electro-optic PLL, and electronically calibrating the control signal for nonlinearity and ambient sensitivity, can make such chirps possible. Approaches that build on the body of advances in electrical PLLs to control the performance, and ease the specification on the design of optical systems are proposed. Eventually, we seek to leverage the twin advantages of silicon-intensive integration and low-cost high-yield towards developing a single-chip solution that uses on-chip signal processing and phased arrays to generate precise and robust chirps for an electronically-steerable fine LIDAR beam.
机译:清洁和强大信号生成的需求无处不在,其应用范围从RF到毫米波,一直到太赫兹间隙。包括移动电话和微处理器在内的RF应用已有效利用CMOS中的混合信号集成,以实现针对恶劣环境条件进行校准的强大片上信号源。与低成本和高产量相结合,手持式设备的CMOS组件每百万分之一的成本为几美分。这种低成本的集成数字处理使CMOS成为高分辨率成像和测距以及新兴的5G通信空间等应用的有吸引力的选择。当将RADAR技术扩展到光频率时,可以实现微米级的3D成像分辨率。但是,这些应用在比常规RF合成器高得多的频率上对功率和频谱纯度提出了高达100倍的更严格的规范;这一代应用将对晶体管技术提出非常规的挑战-是否要压缩常规使用的性能较干的毫米波至亚毫米波频谱中已经拧干的信号频谱或信号生成和系统设计,后者大部分落在“太赫兹间隙”中。确实,尽管晶体管缩放和创新的器件物理学导致了新的晶体管拓扑结构,但在CMOS中产生了更高的截止频率,尽管仍远远落后于SiGe和III-V半导体。为了避免将功能划分到不同技术之间的多模块解决方案,必须将CMOS推出其舒适范围,并且技术扩展必须在设计方法上不仅在系统上而且在块级上都有相应的突破。在本文中,尽管没有针对特定的应用,但我们试图在合成CMOS中的高频,高功率和低噪声信号时提出障碍,并构建一种一致的设计方法来解决这些问题。在此基础上,提出了三种新颖的原型来克服每种情况下的限制因素。本文的前半部分涉及CMOS中的高频信号合成和功率产生。在晶体管具有增益的频率范围之外,要产生频率,就必须将谐波提取为谐波振荡器或倍频器。我们增加了传统的最大振荡频率指标(fmax),该指标仅考虑了晶体管损耗,并采用了无源元件损耗来得出有效的fmax指标。然后,我们介绍了一种在此fmax处建立振荡器的方法,即最大增益环形振荡器。接下来,我们探索通过乘法器中的谐波提取生成超过fmax的大信号。应用波形整形的概念,我们演示了一种功率混合器,它可以通过操纵不同设备节点的幅度和相对相移来设计晶体管非线性,从而在超出器件截止频率的特定谐波条件下最大化性能。超低噪声锁相环(PLL),即参考采样PLL。在传统的PLL中,噪声缓冲器将慢速,低噪声的正弦波参考信号转换为抖动的方波时钟,以此校正噪声压控振荡器(VCO)的相位。我们消除了该参考缓冲器,并通过使用芯片上已有的50倍更快的VCO波形对参考正弦波进行采样并选择电压与相位误差成比例的相关样本来测量相位正弦波。通过避免大功率参考缓冲器噪声的N平方乘法,并直接使用电压模式相位误差来控制VCO,我们消除了控制环路中的多个噪声分量,从而在给定功耗下实现了超低集成抖动。此外,与其他当代的无分频PLL架构不同,将VCO储罐与任何变化的负载隔离开来,将使该架构在低噪声和低杂散空间中具有创纪录的性能。清洁,高功率的信号生成,从而实现了混合CMOS光学方法的调频连续波(FMCW)光检测距(LIDAR)。具有成本效益的可调谐激光器对温度敏感,并且具有非线性调谐曲线,从而使精确的频率调制或“线性调频”变得站不住脚。通过电光PLL将它们锁定到电子基准,并针对非线性和环境敏感性对控制信号进行电子校准,可以使这种chi声成为可能。提出了基于电子PLL的先进技术来控制性能并简化光学系统设计规范的方法。最终,我们寻求利用硅密集型集成和低成本高收益率的双重优势来开发一种单芯片解决方案,该解决方案使用片上信号处理和相控阵为电子可控精细LIDAR产生精确而强大的线性调频光束。

著录项

  • 作者

    Sharma, Jahnavi.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Electrical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号