首页> 外文学位 >A Detection Method of Metallic Impurities (V, Ni, Fe) in Coke and Carbon Anodes and Their Effect on Anode Reactivity =Méthode de détection des impuretés métalliques (V, Ni, Fe) dans le coke et les anodes en carbone et leur effet sur la réactivité de l'anode
【24h】

A Detection Method of Metallic Impurities (V, Ni, Fe) in Coke and Carbon Anodes and Their Effect on Anode Reactivity =Méthode de détection des impuretés métalliques (V, Ni, Fe) dans le coke et les anodes en carbone et leur effet sur la réactivité de l'anode

机译:焦炭和碳阳极中金属杂质(V,Ni,Fe)的检测方法及其对阳极反应性的影响=焦炭和碳阳极中金属杂质(V,Ni,Fe)的检测方法及其对阳极的影响阳极反应性

获取原文
获取原文并翻译 | 示例

摘要

Primary aluminum is produced by the electrolysis of alumina in the Hall-Heroult process. The anodes are the source of carbon required for the reduction process. They are made of calcined petroleum coke, butts, recycled anodes, and coal tar pitch. Carbon anodes constitute an important part of the aluminum production cost. During the production of aluminum, carbon anodes are consumed and CO 2 is produced. CO2 further reacts with the anode carbon to produce CO. Air also reacts with the exposed anode surface to produce CO 2. These reactions increase anode consumption and add to the cost of aluminum production. One of the key industrial goals is to minimize this excess consumption of anodes. The quality of prebaked carbon anodes, consumed in electrolysis during the primary aluminum production, has an important impact on the cell performance. The anode quality depends on the raw material quality and operating conditions in the anode plant. The most common metallic impurities found in cokes and anodes in aluminum industry are vanadium (V), nickel (Ni), and iron (Fe). The properties of the anode are influenced by these impurities. It is reported that they enhance the actual carbon consumption by catalyzing the air and CO2 reactivities in the electrolytic bath.;There are different standard methods to quantify the impurities. The American Society for Testing and Materials (ASTM) developed different test methods using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), Atomic Absorption Spectrometry (AAS), and X-ray Fluorescence Spectroscopy (XRF). These standard methods require intensive sample preparation, highly skilled personnel, and costly reagents. The methods are usually time-consuming. Thus, a simple but effective tool is necessary to estimate the level of different impurities in the raw materials and the anode. In this study, colorimetric methods were developed to determine the levels of impurities (Fe, V, Ni) in cokes and anodes. In this method, the metallic impurities were extracted from the carbon sample by acids and/or electrophoresis. A certain amount of the extract was treated with reagents that can form specific color with a particular impurity. The color was analyzed using a custom-made image analysis software. The value of a particular component of the color was plotted against known concentrations of the impurities to prepare a calibration curve. The calibration curve was later used to estimate the concentration of impurity (Fe, V, Ni) in different samples with unknown concentrations. The colorimetric reagents used for the estimation of iron, vanadium, and nickel were potassium thiocyanate, N-benzoyl-N-phenylhydroxylamine, and dimethylglyoxime, respectively. It is possible to estimate the Fe, V, and Ni content in a carbon sample precisely with developed colorimetric methods in less than 30 minutes including sample preparation. In these methods, no costly ultrapure reagent was used, which reduced the cost of analysis.;Anodes were fabricated using known amounts of impurities (Fe, V, Ni). The density, electrical resistivity, and air and CO2 reactivities of the anode samples were measured. The effect of the above impurities on the air and CO2 reactivities were studied. It was observed that the impurities can catalyze the reactivities of the anode depending on the relative amount of other impurities. An artificial neural network method, which was previously developed by the carbon group, was trained using the experimental data; and the effect of the impurities on the reactivities was also analyzed. This study was carried out within the framework of the University of Quebec at Chicoutimi (UQAC) and Aluminerie Alouette Inc. (AAI) Research Chair on the Utilization of Carbon in Primary Aluminum Industry (UQAC/AAI Research Chair on Carbon).
机译:原铝是通过霍尔-赫鲁特(Hall-Heroult)工艺电解氧化铝而生产的。阳极是还原过程所需的碳源。它们由煅烧的石油焦,烟头,回收的阳极和煤焦油沥青制成。碳阳极是铝生产成本的重要组成部分。在铝的生产过程中,消耗了碳阳极,并产生了CO 2。 CO2进一步与阳极碳反应生成CO。空气也与暴露的阳极表面反应生成CO2。这些反应增加了阳极消耗,并增加了铝的生产成本。工业上的主要目标之一是最大程度地减少阳极的这种过量消耗。在一次铝生产过程中电解消耗的预焙碳阳极的质量对电池性能具有重要影响。阳极质量取决于阳极工厂中的原材料质量和操作条件。在铝工业的焦炭和阳极中发现的最常见的金属杂质是钒(V),镍(Ni)和铁(Fe)。阳极的性能受这些杂质的影响。据报道,它们通过催化电解槽中的空气和CO2反应性来增加实际的碳消耗。有多种标准方法可以量化杂质。美国材料试验学会(ASTM)开发了使用电感耦合等离子体原子发射光谱(ICP-AES),原子吸收光谱(AAS)和X射线荧光光谱(XRF)的不同测试方法。这些标准方法需要密集的样品制备,高技能的人员和昂贵的试剂。该方法通常很耗时。因此,需要一种简单而有效的工具来估算原料和阳极中不同杂质的含量。在这项研究中,开发了比色法以确定焦炭和阳极中杂质(Fe,V,Ni)的含量。在该方法中,通过酸和/或电泳从碳样品中提取金属杂质。将一定量的提取物用可以与特定杂质形成特定颜色的试剂处理。使用定制的图像分析软件分析颜色。将颜色的特定成分的值与杂质的已知浓度作图,以制备校准曲线。校正曲线随后用于估算未知浓度的不同样品中的杂质(Fe,V,Ni)浓度。用于估计铁,钒和镍的比色试剂分别是硫氰酸钾,N-苯甲酰基-N-苯基羟胺和二甲基乙二肟。使用开发的比色方法,包括样品制备,可以在不到30分钟的时间内精确估算碳样品中的Fe,V和Ni含量。在这些方法中,没有使用昂贵的超纯试剂,从而降低了分析成本。使用已知量的杂质(Fe,V,Ni)制造阳极。测量了阳极样品的密度,电阻率以及空气和CO 2的反应性。研究了上述杂质对空气和CO2反应性的影响。观察到,取决于其他杂质的相对量,杂质可以催化阳极的反应性。使用实验数据训练了碳小组先前开发的人工神经网络方法;并分析了杂质对反应性的影响。这项研究是在魁北克大学奇库蒂米分校(UQAC)和Aluminerie Alouette Inc.(AAI)在原铝工业中利用碳的研究主席(UQAC / AAI碳研究主席)的框架内进行的。

著录项

  • 作者

    Sun, Hang.;

  • 作者单位

    Universite du Quebec a Chicoutimi (Canada).;

  • 授予单位 Universite du Quebec a Chicoutimi (Canada).;
  • 学科 Chemical engineering.
  • 学位 M.Sc.A.
  • 年度 2018
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:55

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号