首页> 外文学位 >Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method.
【24h】

Numerical Simulation of Transitional, Hypersonic Flows using a Hybrid Particle-Continuum Method.

机译:使用混合粒子连续法的过渡高超声速流动的数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Analysis of hypersonic flows requires consideration of multiscale phenomena due to the range of flight regimes encountered, from rarefied conditions in the upper atmosphere to fully continuum flow at low altitudes. At transitional Knudsen numbers there are likely to be localized regions of strong thermodynamic nonequilibrium effects that invalidate the continuum assumptions of the Navier-Stokes equations. Accurate simulation of these regions, which include shock waves, boundary and shear layers, and low-density wakes, requires a kinetic theory-based approach where no prior assumptions are made regarding the molecular distribution function. Because of the nature of these types of flows, there is much to be gained in terms of both numerical efficiency and physical accuracy by developing hybrid particle-continuum simulation approaches.;The focus of the present research effort is the continued development of the Modular Particle-Continuum (MPC) method, where the Navier-Stokes equations are solved numerically using computational fluid dynamics (CFD) techniques in regions of the flow field where continuum assumptions are valid, and the direct simulation Monte Carlo (DSMC) method is used where strong thermodynamic nonequilibrium effects are present. Numerical solutions of transitional, hypersonic flows are thus obtained with increased physical accuracy relative to CFD alone, and improved numerical efficiency is achieved in comparison to DSMC alone because this more computationally expensive method is restricted to those regions of the flow field where it is necessary to maintain physical accuracy.;In this dissertation, a comprehensive assessment of the physical accuracy of the MPC method is performed, leading to the implementation of a non-vacuum supersonic outflow boundary condition in particle domains, and more consistent initialization of DSMC simulator particles along hybrid interfaces. The relative errors between MPC and full DSMC results are greatly reduced as a direct result of these improvements. Next, a new parameter for detecting rotational nonequilibrium effects is proposed and shown to offer advantages over other continuum breakdown parameters, achieving further accuracy gains. Lastly, the capabilities of the MPC method are extended to accommodate multiple chemical species in rotational nonequilibrium, each of which is allowed to equilibrate independently, enabling application of the MPC method to more realistic atmospheric flows.
机译:对高超音速流动的分析需要考虑到多尺度现象,因为所遇到的飞行状态范围很广,从高空的稀有条件到低空的完全连续流动。在过渡Knudsen数下,可能存在强热力学非平衡效应的局部区域,这些区域使Navier-Stokes方程的连续假设无效。对包括冲击波,边界层和剪切层以及低密度尾波在内的这些区域的精确模拟,需要基于动力学理论的方法,该方法无需对分子分布函数进行任何先验假设。由于这些类型的流动的性质,通过开发混合粒子连续模拟方法,无论是在数值效率还是物理精度上都将获得很多。;本研究工作的重点是模块化粒子的持续发展。 -连续(MPC)方法,其中使用连续流体假设有效的流场区域中的计算流体力学(CFD)技术,通过数值求解Navier-Stokes方程;在强度较大的情况下,使用直接模拟蒙特卡洛(DSMC)方法存在热力学非平衡效应。因此,相对于单独的CFD,获得的过渡高超声速流的数值解具有更高的物理精度,并且与单独的DSMC相比,可以实现更高的数值效率,因为这种计算量更大的方法仅限于流场中那些需要保持物理精度。本文对MPC方法的物理精度进行了全面评估,从而在粒子域中实现了非真空超音速流出边界条件,并沿混合动力系统更一致地初始化了DSMC模拟器粒子。接口。这些改进的直接结果是,MPC和完整DSMC结果之间的相对误差大大降低了。接下来,提出了一种用于检测旋转非平衡效应的新参数,该参数显示出优于其他连续介质击穿参数的优势,从而进一步提高了精度。最后,扩展了MPC方法的功能,以适应旋转不平衡中的多种化学物质,每种化学物质都可以独立平衡,从而可以将MPC方法应用于更现实的大气流动。

著录项

  • 作者

    Verhoff, Ashley Marie.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 271 p.
  • 总页数 271
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号