首页> 外文学位 >Architectural Support for Designing Dependable Non-volatile Main Memories
【24h】

Architectural Support for Designing Dependable Non-volatile Main Memories

机译:设计可靠的非易失性主要存储器的架构支持

获取原文
获取原文并翻译 | 示例

摘要

Rapid technology scaling has enabled the integration of many computational cores into a single chip. Given this level of core integration, the requirements for a large and scalable main memory system will only grow. Current DRAM-based main memory systems face power and scalability issues due to working at sub-micron scales. As existing memory technologies approach their physical limits in terms of scalability and power consumption, system designers have motivated to explore alternative technologies to meet the increasing demand for higher memory capacity. Phase Change Memory (PCM) has been proposed as one of the most promising technology candidates to replace or complement DRAM. PCM provides non-volatility, fast access latency, low power consumption, high scalability and bit-level access. However, dependability issues are the primary impediments toward adoption of PCM for next generation of memory systems.;In this thesis we investigate new and novel architectural support to design dependable non-volatile memories, while introducing minimal overhead. In the first part of the thesis we introduce mechanisms to improve cell wear-out in PCM technology, in order to prolong memory lifetime. PCM cells can only endure a limited number of writes, and will then wear out, therefore, PCM error correcting schemes are a must for reliable operation. Current error correction schemes for PCMs have limited capabilities in tolerating multiple errors. We first propose an error recovery mechanism to tolerate a large number of hard errors to improve reliability of PCMs. Our mechanism exploits metadata for replacing faulty bits -- error detection and location information is not needed. The location of failed memory cells are identified by a read verification, coupled with an extra write operation. Static and a dynamic partitioning schemes are proposed to alleviate the negative impacts of the extra writes, extending memory lifetime. Furthermore, we introduce a block-level cooperation technique that operates on top of error correction mechanisms to increase metadata utilization. Once an error recovery scheme fails to recover from faults in a data block, the entire physical page associated with that block is disabled and becomes unavailable to the physical address space. To reduce the page waste caused by early block failures, other blocks can be used to support the failed block, working cooperatively to keep it alive and extend the faulty page's lifetime. We show how block cooperation can be realized through metadata sharing, and data layout reorganization besides state-of-the-art error correcting schemes.;In the second part of the thesis, we address thermal disturbance in very dense PCMs. Due to the heat generated during the programming of cells, neighboring cells may be disturbed, experiencing changes in their values. A naive solution is to increase inter-cell space, attempting to isolate cell programming and eliminating write disturbance, but this approach significantly reduces PCM density. We propose two cost-effective solutions to reduce the probability of write disturbance. Our solutions come with few side-effects on other memory system metrics. The first technique is based on data encoding, and tries to reduce the number of vulnerable data patterns when writing data to main memory. The second technique detects vulnerable cells, and overwrites them if their occurrence is below a set threshold. The proposed techniques are general and can avoid much of the performance overhead introduced by write disturbance with incurring negligible overhead on energy consumption and memory lifetime.;Lastly, this thesis addresses security as another aspect of dependability in the memory systems. While nonvolatility is a desirable feature to save energy in NVMs, it creates security vulnerabilities, since data will persistent after system power-off. Data stored in NVMs can be secured using data encryption. However, side effects imposed by memory encryption result in excessive bit writes, which will drastically reduce NVM lifetimes and increase energy consumption. We propose Nacre to bridge the gap between fully-encrypted and unencrypted NVMs. The Nacre exploits standard counter-mode encryption to maintain security. By tracking the different versions of the modified data in each memory writeback, the Nacre attempts to limit the number of bit writes. Selective reencryption is performed based on the history of the modified data in cache lines. We show that our security mechanism can improve memory lifetime significantly, with only marginal increases in energy consumption.
机译:快速的技术扩展使许多计算内核可以集成到单个芯片中。考虑到这种核心集成水平,对大型可伸缩主存储器系统的需求只会增加。由于基于亚微米规模的工作,当前基于DRAM的主存储系统面临功耗和可伸缩性问题。随着现有内存技术在可扩展性和功耗方面接近其物理极限,系统设计人员已积极探索替代技术,以满足对更高内存容量的日益增长的需求。相变存储器(PCM)已被提议作为替代或补充DRAM的最有前途的技术候选之一。 PCM提供非易失性,快速访问延迟,低功耗,高可伸缩性和位级访问。然而,可靠性问题是下一代存储系统采用PCM的主要障碍。在本论文中,我们研究了新的和新颖的架构支持,以设计可靠的非易失性存储器,同时又将开销降至最低。在论文的第一部分,我们介绍了改善PCM技术中的单元磨损以延长存储器寿命的机制。 PCM单元只能承受有限的写入次数,然后会磨损,因此,PCM纠错方案是可靠操作所必需的。当前用于PCM的纠错方案在容忍多个错误中具有有限的能力。我们首先提出一种错误恢复机制,以容忍大量的硬错误,以提高PCM的可靠性。我们的机制利用元数据来替换错误的位-不需要错误检测和位置信息。故障存储单元的位置通过读取验证以及额外的写入操作来识别。提出了静态和动态分区方案,以减轻额外写入的负面影响,从而延长内存寿命。此外,我们介绍了一种块级协作技术,该技术在纠错机制之上运行以提高元数据利用率。一旦错误恢复方案无法从数据块中的故障中恢复,则与该块相关联的整个物理页面将被禁用,并且变为物理地址空间不可用。为了减少早期块故障所导致的页面浪费,可以使用其他块来支持发生故障的块,并协同工作以使其保持活动状态并延长故障页面的寿命。我们展示了如何通过元数据共享以及除最新的纠错方案之外的数据布局重组来实现区块协作。在论文的第二部分,我们解决了非常密集的PCM中的热干扰。由于在单元编程期间产生的热量,相邻单元可能会受到干扰,从而导致其值发生变化。一个幼稚的解决方案是增加单元间的空间,试图隔离单元编程并消除写干扰,但是这种方法显着降低了PCM密度。我们提出了两种具有成本效益的解决方案,以减少写干扰的可能性。我们的解决方案对其他内存系统指标几乎没有副作用。第一种技术基于数据编码,并且在将数据写入主存储器时尝试减少易受攻击的数据模式的数量。第二种技术是检测易受攻击的单元格,如果它们的出现低于设置的阈值,则将其覆盖。所提出的技术是通用的,并且可以避免写扰动所引入的许多性能开销,而在能耗和存储器寿命方面的开销却可以忽略不计。最后,本文将安全性作为存储器系统可靠性的另一个方面。虽然非易失性是节省NVM能量的理想功能,但它会产生安全漏洞,因为数据会在系统关闭电源后保持不变。可以使用数据加密保护存储在NVM中的数据。但是,内存加密带来的副作用导致过多的位写入,这将大大缩短NVM寿命并增加能耗。我们建议使用Nacre来弥补完全加密的NVM和未加密的NVM之间的差距。 Nacre利用标准的反模式加密来维护安全性。通过在每次内存写回中跟踪修改后数据的不同版本,Nacre尝试限制位写入的次数。基于高速缓存行中已修改数据的历史记录执行选择性重新加密。我们表明,我们的安全机制可以显着提高内存寿命,而能耗仅略有增加。

著录项

  • 作者

    Tavana, Mohammad Khavari.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Computer engineering.;Computer science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号