首页> 外文学位 >Systematic Framework to Optimize and Control Monoclonal Antibody Manufacturing Process
【24h】

Systematic Framework to Optimize and Control Monoclonal Antibody Manufacturing Process

机译:优化和控制单克隆抗体生产过程的系统框架

获取原文
获取原文并翻译 | 示例

摘要

Since the approval of the first therapeutic monoclonal antibody in 1986, monoclonal antibody has become an important class of drugs within the biopharmaceutical industry, with indications and superior efficacy across multiple therapeutic areas, such as oncology and immunology. Although there has been great advance in this field, there are still challenges that hinder or delay the development and approval of new antibodies.;For example, we have seen issues in manufacturing, such as quality, process inconsistency and large manufacturing cost, which can be attributed to production failure, delay in approval and drug shortage. Recently, the development of new technologies, such as Process Analytical Tools (PCT), and the use of statistical tools, such as quality by design (QbD), Design of Experiment (DoE) and Statistical Process Control (SPC), has enabled us to identify critical process parameters and attributes, and monitor manufacturing performance.;However, these methods might not be reliable or comprehensive enough to accurately describe the relationship between critical process parameters and attributes, or still lack the ability to forecast manufacturing performance. In this work, by utilizing multiple modeling approaches, we have developed a systematic framework to optimize and control monoclonal antibody manufacturing process.;In our first study, we leverage DoE-PCA approach to unambiguously identify critical process parameters to improve process yield and cost of goods, followed by the use of Monte Carlo simulation to validate the impact of parameters on these attributes. In our second study, we use a Bayesian approach to predict product quality for future manufacturing batches, and hence mitigation strategies can be put in place if the data suggest a potential deviation. Finally, we use neural network model to accurately characterize the impurity reduction of each purification step, and ultimately use this model to develop acceptance criteria for the feed based on the predetermined process specifications. Overall, the work in this thesis demonstrates that the framework is powerful and more reliable for process optimization, monitoring and control.
机译:自从1986年第一种治疗性单克隆抗体获批以来,单克隆抗体已成为生物制药行业中一类重要的药物,在肿瘤学和免疫学等多个治疗领域均具有适应症和优越的疗效。尽管该领域已经取得了长足的进步,但仍然存在阻碍或延迟新抗体开发和批准的挑战。例如,我们已经看到制造中的问题,例如质量,工艺不一致和制造成本高昂,归因于生产失败,审批延迟和药品短缺。最近,新技术的开发,例如过程分析工具(PCT),以及统计工具的使用,例如设计质量(QbD),实验设计(DoE)和统计过程控制(SPC),使我们来识别关键的工艺参数和属性,并监视制造性能。但是,这些方法可能不够可靠或不够全面,无法准确地描述关键的工艺参数和属性之间的关系,或者仍然缺乏预测制造性能的能力。在这项工作中,通过使用多种建模方法,我们开发了一个系统框架来优化和控制单克隆抗体的生产过程。在我们的第一项研究中,我们利用DoE-PCA方法明确确定关键的工艺参数,以提高工艺产量和成本。货物,然后使用蒙特卡洛模拟来验证参数对这些属性的影响。在我们的第二项研究中,我们使用贝叶斯方法预测未来制造批次的产品质量,因此,如果数据表明存在潜在的偏差,则可以采取缓解策略。最后,我们使用神经网络模型来准确表征每个纯化步骤的杂质减少量,并最终使用该模型来基于预定的工艺规范制定进料的接受标准。总体而言,本文的工作表明,该框架功能强大且更可靠,可用于过程优化,监视和控制。

著录项

  • 作者

    Li, Ying Fei.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号