首页> 外文学位 >New Layered Materials and Functional Nanoelectronic Devices
【24h】

New Layered Materials and Functional Nanoelectronic Devices

机译:新的层状材料和功能纳米电子器件

获取原文
获取原文并翻译 | 示例

摘要

This thesis introduces functional nanomaterials including superatoms and carbon nanotubes (CNTs) for new layered solids and molecular devices. Chapters 1-3 present how we incorporate superatoms into two-dimensional (2D) materials. Chapter 1 describes a new and simple approach to dope transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Doping is an effective method to modulate the electrical properties of materials, and we demonstrate an electron-rich cluster can be used as a tunable and controllable surface dopant for semiconducting TMDCs via charge transfer. As a demonstration of the concept, we make a p-n junction by patterning on specific areas of TMDC films.;Chapter 2 and Chapter 3 introduce new 2D materials by molecular design of superatoms. Traditional atomic van der Waals materials such as graphene, hexagonal boron-nitride, and TMDCs have received widespread attention due to the wealth of unusual physical and chemical behaviors that arise when charges, spins, and vibrations are confined to a plane. Though not as widespread as their atomic counterparts, molecule-based layered solids offer significant benefits; their structural flexibility will enable the development of materials with tunable properties. Chapter 2 describes a layered van der Waals solid self-assembled from a structure-directing building block and C60 fullerene. The resulting crystalline solid contains a corrugated monolayer of neutral fullerenes and can be mechanically exfoliated. Chapter 3 describes a new method to functionalize electroactive superatoms with groups that can direct their assembly into covalent and non-covalent multi-dimensional frameworks. We synthesized Co6Se8[PEt2(4-C6H4COOH)]6 and found that it forms two types of crystalline assemblies with Zn(NO3)2, one is a three-dimensional solid and the other consists of stacked layers of two-dimensional sheets. The dimensionality is controlled by subtle changes in reaction conditions.;CNT-based field-effect transistor (FETs), in which a single molecule spans an oxidatively cut gap in the CNT, provide a versatile, ground-state platform with well-defined electrical contacts. For statistical studies of a variety of small molecule bridges, Chapter 4 presents a novel fabrication method to produce hundreds of FETs on one single carbon nanotube. A large number of devices allows us to study the stability and uniformity of CNT FET properties. Moreover, the new platform also enables a quantitative analysis of molecular devices. In particular, we used CNT FETs for studying DNA-mediated charge transport. DNA conductance was measured by connecting DNA molecules of varying lengths to lithographically cut CNT FETs.
机译:本文介绍了用于新型层状固体和分子器件的功能纳米材料,包括超原子和碳纳米管(CNT)。第1-3章介绍了如何将超原子整合到二维(2D)材料中。第1章介绍了一种使用超原子Co6Se8(PEt3)6作为电子掺杂剂来掺杂过渡金属二卤化物(TMDC)的新方法。掺杂是一种调节材料电学性能的有效方法,我们证明了富电子簇可通过电荷转移用作半导体TMDC的可调谐和可控表面掺杂剂。为了说明这一概念,我们通过在TMDC薄膜的特定区域上进行构图来建立p-n结。第二章和第三章通过超原子的分子设计介绍了新的2D材料。石墨烯,六方氮化硼和TMDC等传统原子范德华材料由于电荷,自旋和振动被限制在平面内而产生的异常物理和化学行为而受到广泛关注。基于分子的层状固体虽然不如它们的原子对应物广泛,但具有明显的优势。它们的结构灵活性将使开发具有可调特性的材料成为可能。第2章介绍了由结构导向的构建基块和C60富勒烯自组装而成的分层范德华固体。所得结晶固体包含中性富勒烯的波纹状单层,可以机械剥落。第3章介绍了一种新的方法,该方法可通过可将其组装成共价和非共价多维框架的基团官能化电活性超原子。我们合成了Co6Se8 [PEt2(4-C6H4COOH)] 6,发现它与Zn(NO3)2形成两种类型的晶体组装体,一种是三维固体,另一种是由二维薄片的堆叠层组成。尺寸由反应条件的细微变化控制。基于CNT的场效应晶体管(FET),其中一个分子跨越CNT中的氧化切割间隙,提供了具有定义明确的电特性的通用基态平台联系人。为了对各种小分子桥进行统计研究,第4章提出了一种新颖的制造方法,可以在一个碳纳米管上生产数百个FET。大量器件使我们能够研究CNT FET特性的稳定性和均匀性。而且,新平台还可以对分子装置进行定量分析。特别是,我们使用CNT FET研究DNA介导的电荷传输。通过将不同长度的DNA分子连接到光刻切割的CNT FET来测量DNA电导。

著录项

  • 作者

    Yu, Jaeeun.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号