首页> 外文学位 >Multi-beam-interference-based methodology for the fabrication of photonic crystal structures.
【24h】

Multi-beam-interference-based methodology for the fabrication of photonic crystal structures.

机译:基于多光束干涉的光子晶体结构制造方法。

获取原文
获取原文并翻译 | 示例

摘要

Photonic crystal (PC) technology offers the potential of lossless control of the propagation of light at microelectronic and nanoelectronic size scales. Numerous important physical characteristics have already been demonstrated. These phenomena include the photonic bandgap, the superprism effect, negative refraction, and negative diffraction. Individual components that have been demonstrated include waveguides, resonators, filters, waveguide couplers, directional couplers, demultiplexers, antennas, switches, and sensors. The integration of optimized versions of these components would produce the first truly dense integrated photonic circuits and systems (DIPCS) that would perform functions such as interconnection, communication, image acquisition, image processing, image recognition, A-to-D conversion, control, and bio/chem-sensing.;A variety of techniques are available to enable the fabrication of photonic crystal structures. Multi-beam-interference lithography (MBIL) is a relatively new technique which offers many advantages over more traditional means of fabrication. Unlike the more common fabrication methods such as optical and electron-beam lithography, MBIL is a method that can produce both two- and three-dimensional large-area photonic crystal structures for use in the infrared and visible light regimes. While multi-beam-interference lithography represents a promising methodology for the fabrication of PC structures, there has been an incomplete understanding of MBIL itself. The research in this thesis focuses on providing a more complete, systematic description of MBIL in order to demonstrate its full capabilities.;Analysis of both three- and four-beam interference is investigated and described in terms of contrast and crystallography. The concept of a condition for primitive-lattice-vector-direction equal contrasts is introduced in this thesis. These conditions are developed as nonlinear constraints when optimizing absolute contrast for producing lithographically useful interference patterns (meaning high contrast and localized intensity extrema). By understanding the richness of possibilities within MBIL, a number of useful interference patterns are found that can be created in a straightforward manner. These patterns can be both lithographically useful and structurally useful (providing interference contours that can define wide-bandgap photonic crystals). Included within this investigation are theoretical calculations of band structures for photonic crystals that are fabricatable through MBIL. The resulting calculations show that not only do most MBIL-defined structures exhibit similar performance characteristics compared to conventionally designed photonic crystal structures, but in some cases MBIL-defined structures show a significant increase in bandgap size. Using the results from this analysis, a number of hexagonal photonic crystals are fabricated using a variety of process conditions. It is shown that both rod- and hole-type photonic crystal structures can be fabricated using processes based on both positive and negative photoresist. The "light-field" and "dark-field" interference patterns used to define the hexagonal photonic crystal structures are quickly interchanged by the proper adjustment of each beam's intensity and polarization. The resulting structures, including a large area (∼1 cm2, 1 x 109 lattice points) photonic crystal are imaged using a scanning electron microscope.;Multi-beam-interference lithography provides an enabling initial step for the wafer-scale, cost-effective integration of the impressive PC-based devices into manufacturable DIPCS. While multi-beam-interference lithography represents a promising methodology for the fabrication of PC structures, it lacks in the ability to produce PC-based integrated photonic circuits. Future research will target the lack of a large-scale, cost-effective fabrication methodology for photonic crystal devices. By utilizing diffractive elements, a photomask will be able to combine both MBIL and conventional lithography techniques into a single fabrication technology while taking advantage of the inherent positive attributes of both.
机译:光子晶体(PC)技术提供了在微电子和纳米电子尺度上无损控制光传播的潜力。已经证明了许多重要的物理特性。这些现象包括光子带隙,超棱镜效应,负折射和负衍射。已证明的各个组件包括波导,谐振器,滤波器,波导耦合器,定向耦合器,解复用器,天线,开关和传感器。这些组件的优化版本的集成将产生第一个真正的密集集成光子电路和系统(DIPCS),该系统将执行以下功能:互连,通信,图像采集,图像处理,图像识别,模数转换,控制,以及生物/化学感应。;多种技术可用于制造光子晶体结构。多光束干涉光刻(MBIL)是一种相对较新的技术,与更传统的制造方法相比,具有许多优势。与更常见的制造方法(例如光学和电子束光刻)不同,MBIL是一种可以产生二维和三维大面积光子晶体结构的方法,可用于红外和可见光领域。尽管多光束干涉光刻技术是制造PC结构的有前途的方法,但对MBIL本身的理解还不完全。本文的研究着重于提供更完整,系统的MBIL描述,以证明其完整的功能。;对三束和四束干涉的分析进行了研究,并从对比和晶体学角度对其进行了描述。本文介绍了本征格向量方向相等对比度的条件的概念。当优化绝对对比度以产生光刻上有用的干涉图案(意味着高对比度和局部强度极值)时,这些条件被发展为非线性约束。通过了解MBIL内的可能性的丰富性,发现了许多可以直接创建的有用干扰模式。这些图案在光刻上和结构上都是有用的(提供可以定义宽带隙光子​​晶体的干涉轮廓)。该研究包括通过MBIL可制造的光子晶体的能带结构的理论计算。计算结果表明,与传统设计的光子晶体结构相比,大多数MBIL定义的结构不仅表现出相似的性能特征,而且在某些情况下,MBIL定义的结构显示出带隙尺寸的显着增加。利用该分析的结果,可以使用各种工艺条件制造出许多六角形光子晶体。结果表明,可以使用基于正性和负性光致抗蚀剂的工艺来制造棒型和孔型光子晶体结构。通过适当调整每个光束的强度和偏振,可以快速互换用于定义六边形光子晶体结构的“光场”和“暗场”干涉图样。使用扫描电子显微镜对所得的结构(包括大面积(约1 cm2,1 x 109晶格点)的光子晶体)进行成像。多光束干涉光刻为晶圆级,经济高效的薄膜化提供了可行的初始步骤将令人印象深刻的基于PC的设备集成到可制造的DIPCS中。尽管多光束干涉光刻技术是制造PC结构的有前途的方法,但它缺乏生产基于PC的集成光子电路的能力。未来的研究将针对缺乏用于光子晶体器件的大规模,经济高效的制造方法。通过利用衍射元件,光掩模将能够将MBIL和常规光刻技术结合到一个制造技术中,同时利用两者的固有积极特性。

著录项

  • 作者

    Stay, Justin L.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 271 p.
  • 总页数 271
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号