首页> 外文学位 >Structural and clumped-isotope constraints on the mechanisms of displacement along low-angle detachments.
【24h】

Structural and clumped-isotope constraints on the mechanisms of displacement along low-angle detachments.

机译:结构和成簇的同位素约束沿低角度脱离位移的机制。

获取原文
获取原文并翻译 | 示例

摘要

Despite years of research on low-angle detachments, much about them remains enigmatic. This thesis addresses some of the uncertainty regarding two particular detachments, the Mormon Peak detachment in Nevada and the Heart Mountain detachment in Wyoming and Montana.;Constraints on the geometry and kinematics of emplacement of the Mormon Peak detachment are provided by detailed geologic mapping of the Meadow Valley Mountains, along with an analysis of structural data within the allochthon in the Mormon Mountains. Identifiable structures well suited to constrain the kinematics of the detachment include a newly mapped, Sevier-age monoclinal flexure in the hanging wall of the detachment. This flexure, including the syncline at its base and the anticline at its top, can be readily matched to the base and top of the frontal Sevier thrust ramp, which is exposed in the footwall of the detachment to the east in the Mormon Mountains and Tule Springs Hills. The ∼12 km of offset of these structural markers precludes the radial sliding hypothesis for emplacement of the allochthon.;The role of fluids in the slip along faults is a widely investigated topic, but the use of carbonate clumped-isotope thermometry to investigate these fluids is new. Faults rocks from within ~1 m of the Mormon Peak detachment, including veins, breccias, gouges, and host rocks, were analyzed for carbon, oxygen, and clumped-isotope measurements. The data indicate that much of the carbonate breccia and gouge material along the detachment is comminuted host rock, as expected. Measurements in vein material indicate that the fluid system is dominated by meteoric water, whose temperature indicates circulation to substantial depths (c. 4 km) in the upper crust near the fault zone.;Slip along the subhorizontal Heart Mountain detachment is particularly enigmatic, and many different mechanisms for failure have been proposed, predominantly involving catastrophic failure. Textural evidence of multiple slip events is abundant, and include multiple brecciation events and cross-cutting clastic dikes. Footwall deformation is observed in numerous exposures of the detachment. Stylolitic surfaces and alteration textures within and around "banded grains" previously interpreted to be an indicator of high-temperature fluidization along the fault suggest their formation instead via low-temperature dissolution and alteration processes. There is abundant textural evidence of the significant role of fluids along the detachment via pressure solution. The process of pressure solution creep may be responsible for enabling multiple slip events on the low-angle detachment, via a local rotation of the stress field.;Clumped-isotope thermometry of fault rocks associated with the Heart Mountain detachment indicates that despite its location on the flanks of a volcano that was active during slip, the majority of carbonate along the Heart Mountain detachment does not record significant heating above ambient temperatures (c. 40-70°C). Instead, cold meteoric fluids infiltrated the detachment breccia, and carbonate precipitated under ambient temperatures controlled by structural depth. Locally, fault gouge does preserve hot temperatures (>200°C), as is observed in both the Mormon Peak detachment and Heart Mountain detachment areas. Samples with very hot temperatures attributable to frictional shear heating are present but rare. They appear to be best preserved in hanging wall structures related to the detachment, rather than along the main detachment.;Evidence is presented for the prevalence of relatively cold, meteoric fluids along both shallow crustal detachments studied, and for protracted histories of slip along both detachments. Frictional heating is evident from both areas, but is a minor component of the preserved fault rock record. Pressure solution is evident, and might play a role in initiating slip on the Heart Mountain fault, and possibly other low-angle detachments.
机译:尽管对低角度脱离进行了多年的研究,但有关它们的许多内容仍然是个谜。本论文解决了关于两个特定分支的一些不确定性,即内华达州的摩门峰支队和怀俄明州和蒙大纳州的心山支队。;摩门峰支队的位移的几何学和运动学由详细的地质图提供。草甸山谷山脉,以及对摩门教山脉内异位线内结构数据的分析。非常适合限制运动学的可识别结构包括在该运动的悬挂壁中新绘制的Sevier年龄单斜弯曲。这种挠曲,包括其底部的向斜线和顶部的背斜线,可以很容易地与额叶塞维尔推力坡道的底部和顶部相匹配,该塞维尔斜推力坡道暴露在摩门山脉和图勒东部的支队的底盘中斯普林斯山。这些结构标记的〜12 km的偏移量排除了异位线的位置的径向滑动假说。流体在沿着断层的滑移中的作用是一个广泛研究的话题,但是使用碳酸盐块状同位素测温法研究这些流体是新的。分析了摩门峰(Mormon Peak)裂隙附近约1 m内的断层岩石,包括脉,角砾岩,凿孔和宿主岩石,以测量碳,氧和成块的同位素。数据表明,沿支路的许多碳酸盐角砾岩和凿岩材料都是被粉碎的基质岩,这与预期的一样。静脉物质的测量表明,流体系统主要由陨石水组成,其温度表明在断层带附近的上地壳中循环到相当深的深度(约4 km).;沿水平心山分离的滑移特别令人困惑,并且已经提出了许多不同的故障机制,主要涉及灾难性故障。多次滑移事件的纹理证据丰富,包括多次渗漏事件和横切碎屑堤防。在多次脱离中观察到了下盘变形。以前被解释为沿着断层的高温流化的指示物的“带状晶粒”之内和周围的笔直表面和蚀变纹理提示它们是通过低温溶解和蚀变过程形成的。有大量的结构证据表明,流体通过压力溶液沿分离过程起着重要作用。压力解蠕变的过程可能是通过应力场的局部旋转引起低角度分离的多次滑动事件的原因。与Heart Mountain分离相关的断层岩石的聚集同位素温度计表明,尽管其位置位于在打滑期间处于活动状态的火山的侧面,沿心山分离带的大部分碳酸盐都没有记录到高于环境温度(约40-70°C)的明显加热现象。取而代之的是,冷的大气流体渗透到角砾岩的角砾岩中,碳酸盐在受结构深度控制的环境温度下沉淀。局部而言,断层泥确实保留了高温(> 200°C),这在摩门峰山分离区和心山分离区都可以看到。存在可归因于摩擦剪切加热的温度非常高的样品,但很少见。它们似乎最好地保存在与该脱离有关的悬挂壁结构中,而不是沿着主要脱离。证据表明,研究的浅地壳沿这两个相对较冷的陨石普遍存在,以及沿这两个方向长期滑移的历史支队。摩擦加热在这两个区域都很明显,但是在保留的断层岩石记录中是次要的。压力解决方案是显而易见的,并且可能在引发Heart Mountain断层上的滑动以及可能的其他低角度脱离中起作用。

著录项

  • 作者

    Swanson, Erika.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Geology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号