首页> 外文学位 >Electronic and Vibrational Properties of Low-Dimensional Heterogeneous Systems: Materials and Device Perspectives.
【24h】

Electronic and Vibrational Properties of Low-Dimensional Heterogeneous Systems: Materials and Device Perspectives.

机译:低维异构系统的电子和振动特性:材料和设备的观点。

获取原文
获取原文并翻译 | 示例

摘要

Due to the aggressive miniaturization of memory and logic devices, the current technologies based on silicon have nearly reached their ultimate size limit. One method to maintain the trend in device scaling observed by Moore's law is to create a heterostructure from existing materials and utilize the underlying electronic and optical properties. Another radical approach is the conceptualization of a new device design paradigm. The central objective of this thesis is to use both of these approaches to address issues associated with the aggressive scaling of memory and logic devices such as leakage current, leakage power, and minimizing gate oxide thickness and threshold voltage. In the first part of the dissertation, an atomistic, empirical tight binding method was used to perform a systematic investigation of the effect of physical (shape and size), and material dependent (heterogenity and strain) properties on the device related electronic and optical properties of the Germanium (Ge)/Silicon (Si) nanocrystal (NC) or quantum dot (QD). The device parameters pertaining to Ge-core/Si-shell NC-based floating gate memory and optical devices such as confinement energy, retention lifetimes and optical intensities are captured and analyzed. For both the memory and optical device applications, regardless of the shape and size, the Ge-core is found to play an important role in modifying the confinement energy and carrier dynamics. However, the variation in the thickness of outer Si-shell layer had no or minimal effect on the overall device parameters.;In the second part of the dissertation, we present a systematic study of the effect of atomistic heterogeneity on the vibrational properties of quasi-2D systems and recently discovered 2D materials such as graphene, while investigating their applicabilities in future devices applications. At first, we investigate the vibrational properties of an experimentally observed misoriented bilayer graphene (MBG) system, a heterostructure where two graphene layers are rotated by a relative angle, using molecular dynamic (MD) method. The MD method includes temperature dependent phonon anharmonicity which correctly predicts misorientation angle (&;Finally, we have conceptualized a novel low power device called TMDC Excitonic Field Effect Transistor (TExFET), using other 2D materials namely, hexagonal boron nitride (h-BN) and Transition Metal Dichalcogenides (TMDC) by creating a TMDC/h-BN/TMDC heterstructure system. The characteristics of the TExFET device is explored with a combination of the variational principle and the mean field approximation. Our variational principle based calculation of the unscreened interlayer Coulombic forces in the TMDC/h-BN/TMDC system gives us an upper bound exciton gap in the order of 100 meV, mainly due to the isotropic electron and hole effective masses of the TMDC layers. Due to an effective exciton radius in the range of 2 nm, the TExFET could also be a device of choice for maintaining the device scaling trend. Further, when the effect of static screening between the layers is considered during self-consistent calculations, the interaction strength is reduced by ∼ 40% to 60 meV, producing an excitonic gap suitable for low temperature, low power device applications.
机译:由于存储器和逻辑器件的积极小型化,当前基于硅的技术几乎已达到其最终尺寸极限。维持摩尔定律所观察到的器件缩放趋势的一种方法是从现有材料创建异质结构,并利用潜在的电子和光学特性。另一种激进的方法是新设备设计范例的概念化。本文的主要目标是使用这两种方法来解决与存储器和逻辑器件的大规模扩展相关的问题,例如泄漏电流,泄漏功率以及最小化栅极氧化物厚度和阈值电压。在论文的第一部分中,使用原子的,经验的紧密结合方法对物理(形状和尺寸)和材料相关(异质性和应变)特性对器件相关的电子和光学特性的影响进行了系统的研究。 (Ge)/ Si(Si)纳米晶体(NC)或量子点(QD)的结构。捕获并分析与基于Ge-core / Si-shell NC的浮栅存储器和光学器件有关的器件参数,例如约束能量,保持寿命和光强度。对于存储器和光学设备应用,无论形状和大小如何,Ge核都在改变约束能量和载流子动力学方面起着重要作用。然而,外层硅壳层的厚度变化对整个器件参数没有影响或影响很小。在论文的第二部分,我们系统地研究了原子异质性对准振动特性的影响。 -2D系统以及最近发现的2D材料(例如石墨烯),同时研究了它们在未来设备应用中的适用性。首先,我们使用分子动力学(MD)方法研究了实验观察到的取向错误的双层石墨烯(MBG)系统的振动特性,该系统是两个石墨烯层以相对角度旋转的异质结构。 MD方法包括与温度有关的声子非谐性,它可以正确预测取向错误的角度(最后,我们使用其他2D材料即六方氮化硼(h-BN)概念化了一种称为TMDC激子场效应晶体管(TExFET)的新型低功率器件通过创建TMDC / h-BN / TMDC异质结构体系制备过渡金属双硫属化物(TMDC),结合变分原理和平均场近似,探索了TExFET器件的特性,我们基于变分原理计算了非屏蔽中间层TMDC / h-BN / TMDC系统中的库仑力使我们产生的激子上限约为100 meV,这主要是由于TMDC层的各向同性电子和空穴有效质量引起的。当薄膜厚度为2 nm时,TExFET也可以作为维持器件缩放趋势的首选器件。在进行自洽计算时,相互作用强度降低了约40%,降至60 meV,从而产生了适合低温,低功率器件应用的激子间隙。

著录项

  • 作者

    Neupane, Mahesh Raj.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 239 p.
  • 总页数 239
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号