首页> 外文学位 >Observing transiting exoplanets: Removing systematic errors to constrain atmospheric chemistry and dynamics.
【24h】

Observing transiting exoplanets: Removing systematic errors to constrain atmospheric chemistry and dynamics.

机译:观察正在运行的系外行星:消除系统误差以限制大气化学和动力学。

获取原文
获取原文并翻译 | 示例

摘要

The > 1500 confirmed exoplanets span a wide range of planetary masses ( ~1 MEarth --20 MJupiter), radii (~ 0.3 R Earth --2 RJupiter), semi-major axes (~ 0.005--100 AU), orbital periods (~0.3--1 x 105 days), and host star spectral types. The effects of a widely-varying parameter space on a planetary atmosphere's chemistry and dynamics can be determined through transiting exoplanet observations. An exoplanet's atmospheric signal, either in absorption or emission, is on the order of ~0.1% which is dwarfed by telescope-specific systematic error sources up to ~60%. This thesis explores some of the major sources of error and their removal from space- and ground-based observations, specifically Spitzer /IRAC single-object photometry, IRTF/SpeX and Palomar/TripleSpec low-resolution single-slit near-infrared spectroscopy, and Kuiper/Mont4k multi-object photometry. The errors include pointing-induced uncertainties, airmass variations, seeing-induced signal loss, telescope jitter, and system variability. They are treated with detector efficiency pixel-mapping, normalization routines, a principal component analysis, binning with the geometric mean in Fourier-space, characterization by a comparison star, repeatability, and stellar monitoring to get within a few times of the photon noise limit. As a result, these observations provide strong measurements of an exoplanet's dynamical day-to-night heat transport, constrain its CH4 abundance, investigate emission mechanisms, and develop an observing strategy with smaller telescopes. The reduction methods presented here can also be applied to other existing and future platforms to identify and remove systematic errors. Until such sources of uncertainty are characterized with bright systems with large planetary signals for platforms such as the James Webb Space Telescope, for example, one cannot resolve smaller objects with more subtle spectral features, as expected of exo-Earths.
机译:超过1500个已确认的系外行星跨越了广泛的行星质量(〜1 MEar-20 MJupiter),半径(〜0.3 R Earth -2 RJupiter),半长轴(〜0.005--100 AU),轨道周期( 〜0.3--1 x 105天),以及主星光谱类型。可以通过转换系外行星观测来确定参数空间的广泛变化对行星大气化学和动力学的影响。系外行星的大气信号,无论是吸收还是发射,都在〜0.1%的数量级,这与望远镜专用的系统误差源相差高达60%。本文探讨了一些主要的误差来源以及从空间和地面观测中消除的一些误差,特别是Spitzer / IRAC单物体光度法,IRTF / SpeX和Palomar / TripleSpec低分辨率单缝近红外光谱法,以及Kuiper / Mont4k多对象测光法。误差包括指向引起的不确定性,气团变化,看见引起的信号损失,望远镜抖动和系统可变性。通过检测器效率像素映射,归一化例程,主成分分析,在傅立叶空间中的几何平均值进行装箱,通过比较星进行表征,可重复性以及恒星监测来对它们进行处理,以使其在光子噪声极限的几倍之内。结果,这些观测结果提供了对系外行星昼夜动态热传递的有力测量,可以限制其CH4的丰度,研究发射机制,并利用较小的望远镜制定观测策略。此处介绍的减少方法也可以应用于其他现有和将来的平台,以识别和消除系统错误。举例来说,在像詹姆斯·韦伯太空望远镜这样的平台上,这种不确定性源以具有大行星信号的明亮系统为特征之前,就无法分辨出具有更微妙光谱特征的较小物体,这正是外地球所期望的。

著录项

  • 作者

    Zellem, Robert Thomas.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Astrophysics.;Planetology.;Astronomy.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号