首页> 外文学位 >Disruption of Protein-Protein Interfaces and Computational Mechanistic Studies.
【24h】

Disruption of Protein-Protein Interfaces and Computational Mechanistic Studies.

机译:蛋白质-蛋白质界面的破坏和计算机理研究。

获取原文
获取原文并翻译 | 示例

摘要

Research is nothing if not collaborative; computational chemists have a wide variety of tools available at their disposal and can greatly facilitate the progress of research beyond what is possible using only traditional synthetic techniques. On the whole, computational chemistry has steadily gained acceptance in the scientific community. Advantages include no purifications of intermediates, virtually no exposure to toxic chemicals in the laboratory, and (relatively) quick turnarounds. When modeling specific reactions, the difficulty arises in interpreting the Potential Energy Surface (PES) and building a predictive model of reactivity rather than exhaustively examining every possibility. The use of computers as a tool to aid the modern chemist is examined within these chapters and explored in the context of small molecule inhibitor design and Density Functional Theory (DFT) mechanistic studies.;Section 1 -- Design and synthesis of potential therapeutics: The rationale design of new therapeutics is a key application of computational chemistry. The chapters within this section serve as an introduction to the potential applications and utility of these methods.;Chapter 1: This chapter introduces the need for new antibiotics and the basics of the computational methods used in the following chapters.;Chapter 2: The design and synthesis of potential bacterial cell division modulators is explored. The need for new antibiotics is readily documented in the literature as modern antibiotics form an evolutionary pressure. Understanding the mechanisms by which bacterial cells divide, and thus propagate, could lead to novel therapeutics. SulA naturally modulates the bacterial cell division protein FtsZ, and disrupting this interaction with a small molecule allows for study without the need for inducing a genetic mutation. Two inhibitor scaffolds for disrupting this protein interface were designed using the Openeye suite of programs. Additionally, the screening of large molecular libraries from the ZINC database was accomplished against both the SulA and FtsZ protein receptors, leading to identification of commercially available compounds that could be assayed against both protein targets. Chapter 3: The generation and screening of a novel library based on Gyramide A for LogD and other molecular descriptors from commercially available benzaldehydes and sulfonamides was accomplished.;Section 2 -- Pericyclic reactions: Pericyclic reactions allow for complex transformations of organic skeletons in a concerted fashion, thereby preserving stereochemical information. These reactions are not only relevant to the synthetic world, but are found in nature as well.;Chapter 4: The [3,3] sigmatropic shift reaction, known as the Cope rearrangement, is explored. In the addition of alkynyl sulfones and tertiary amines, ring expansion is found to be dictated largely by steric considerations, while a lone pair on carbon acts largely as a substituent instead of a nucleophile.;Chapter 5: A bio-mimetic variation of the Cope rearrangement utilizing Globiferin is explored. An intriguing catalytic effect was discovered when a protonated tertiary amine was used to try to find a stepwise pathway, but a concerted process with a substantially lower barrier for rearrangement was found instead, having a potentially substantial affect on our understanding of biosynthetic pathways.;Chapter 6: The viability of Nitrone-Alkene (3+2) cyclizations is explored in the formation of Fluggine A. One of the reactants can undergo a competing (3+2) cyclization intramolecularly. However, this is found to have a higher barrier. This is consistent with the observation of Fluggine A formation when the required norsecurinine substrate is present, and cyclization with itself to form virosaine B when norsecurinine is absent.;Section 3 -- Synthetic Collaborations/Heterocycle reactions: The projects within this section are collaborations with synthetic groups at other universities and illustrate the utility in direct collaborations between computational chemists and other researchers. Each chapter in this section covers the formation of heterocycles, which are a privileged scaffold and known to possess biologically relevant activity. As such, the formation of new heterocycles is of great scientific interest.;Chapter 7: Bryostatin 1 is of biological interest due to antitumor activity, and its complex chemical structure. The formation of tetrahydropyran analogs of bryostatin 1 derived via silyl-Prins cyclization is examined computationally in this chapter. The stabilization of a tertiary cation by a beta-silyl substituent is key for explaining the observed selectivity.;Chapter 8: The possibility of a pericyclic six-electron electrocyclization in the formation of indolines is explored but found to be significantly higher than the comparable 5-endo-trig cyclization. The competing mechanisms were found to arise from different imine reactant geometries, allowing for different orbital alignments in their respective TS geometries. The cinchona alkaloids are found to affect enantioselectivity through more than a simple counter-ion effect.;Chapter 9: This chapter describes a collaborative project between three academic groups---specialists in synthetic methods, quantum chemical computations, and kinetic studies---to reconcile differences in data obtained while studying a heterocycloisomerization reaction for the creation of annulated aminopyrroles. Through collaboration, a complete picture of the mechanism was obtained, which would have been insufficient/inadequate had any one research group been removed.
机译:如果没有合作,研究就算什么。计算化学家可以使用各种各样的工具,它们可以大大促进研究的进展,而不仅仅是使用传统的合成技术。总体而言,计算化学已在科学界稳步获得接受。优点包括无需纯化中间体,实际上在实验室中不会暴露于有毒化学物质,以及(相对)快速周转。在对特定反应进行建模时,在解释势能面(PES)和建立反应性的预测模型而不是详尽检查每种可能性时会遇到困难。这些章节对计算机作为现代化学家的辅助工具进行了研究,并在小分子抑制剂设计和密度泛函理论(DFT)机理研究的背景下进行了探讨;第1部分-潜在疗法的设计和合成:新疗法的基本原理设计是计算化学的关键应用。本节中的各章介绍了这些方法的潜在应用和实用性。第1章:本章介绍了对新抗生素的需求以及以下各章中使用的计算方法的基础。第2章:设计并探索了潜在细菌细胞分裂调节剂的合成。随着现代抗生素形成进化压力,对新抗生素的需求已在文献中轻松记录。了解细菌细胞分裂并因此繁殖的机制可能会导致新的治疗方法。 SulA天然调节细菌细胞分裂蛋白FtsZ,并破坏与小分子的相互作用使得无需诱导基因突变即可进行研究。使用Openeye程序套件设计了两种破坏该蛋白质界面的抑制剂支架。此外,针对SulA和FtsZ蛋白受体从ZINC数据库中筛选大分子文库,从而鉴定出可针对两种蛋白靶标进行分析的市售化合物。第3章:完成了基于Gyramide A的新颖文库的生成和筛选,该文库是从市售的苯甲醛和磺酰胺中获得的LogD和其他分子描述符。;第二部分-周环反应:周环反应可实现有机骨架在协同作用下的复杂转化从而保留了立体化学信息。这些反应不仅与合成世界有关,而且在自然界中也有发现。第四章:探讨了[3,3]σ位移反应,称为Cope重排。在添加炔基砜和叔胺的过程中,发现扩环主要是由空间因素决定的,而碳上的孤对则主要是取代基,而不是亲核试剂。第5章:Cope的仿生变异探索使用球蛋白的重排。当使用质子化的叔胺尝试寻找阶梯式途径时,发现了一种有趣的催化作用,但是相反,发现了协同重排过程,其重排障碍明显更低,这对我们对生物合成途径的理解具有潜在的实质性影响。图6:在形成Fluggine A的过程中,研究了氮烯(3 + 2)环化的可行性。一种反应物可以在分子内经历竞争性(3 + 2)环化。然而,发现这具有更高的障碍。这与观察到当存在所需的正苏氨嘧啶底物时产生的Fluggine A形成,以及当不存在正苏糖胺碱时环化其自身以形成virosaine B时所观察到的一样。;第3节-合成协作/杂环反应:本节中的项目是与其他大学的合成小组,并说明了计算化学家与其他研究人员之间直接合作中的效用。本节的每一章都涉及杂环的形成,杂环是一种特权支架,已知具有生物学相关活性。因此,新杂环的形成具有极大的科学意义。第7章:由于抗肿瘤活性及其复杂的化学结构,Bryostatin 1具有生物学意义。本章通过计算研究了通过甲硅烷基-Prins环化衍生的溴抑他汀1的四氢吡喃类似物的形成。 β-甲硅烷基取代基对叔阳离子的稳定作用是解释所观察到的选择性的关键。第8章:探索了在二氢吲哚形成过程中六环电子电环化的可能性,但发现其显着高于可比的5 -内-trig环化。发现竞争机理源自不同的亚胺反应物几何形状,允许在各自的TS几何形状中进行不同的轨道对准。发现金鸡纳生物碱不仅通过简单的抗衡离子效应影响对映体选择性。第9章:本章介绍了三个学术团体之间的合作项目-合成方法,量子化学计算和动力学研究的专家-为了调和研究杂环异构化反应以生成带环的氨基吡咯的过程中获得的数据的差异。通过合作,获得了对该机制的完整描述,如果删除任何一个研究组,这将是不足/不足的。

著录项

  • 作者

    Painter, Phillip Pierre.;

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Organic chemistry.;Physical chemistry.;Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号