首页> 外文学位 >Wearable Tattoo Electronics Capable of Dissolving in the Human Body.
【24h】

Wearable Tattoo Electronics Capable of Dissolving in the Human Body.

机译:能够在人体中溶解的可穿戴纹身电子产品。

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in electronics enable powerful biomedical devices that have greatly reduced therapeutic risks by monitoring vital signals and providing means of treatment. Implantable devices can help us better understand the behavior and effects of various diseases. However, an additional procedure is required to remove the device after an initial implantation. Conventional electronics today form on the planar surfaces of brittle wafer substrates and are not compatible with the complex topology of body tissues. Therefore, stretchable and absorbable electronics are the two missing links in the design process of implantable monitors and in-vivo therapeutics. This thesis presents the challenges, mechanics, and design strategies, behind a potential medical device that (a) integrates with human physiology, and (b) dissolves completely after its effective operation. Implanted devices will provide a much better understanding of organ functions and offer more time efficient treatments for serious diseases such as heart failure.;Stretchable electronics can be achieved in two conceptually different, but complementary ways. One relies on the development of intrinsically stretchable, organic materials in conventional layouts, the other on mechanics-guided stretchable designs of inorganic materials. Many of the latter stretchable systems adopt an "island-bridge" design strategy, with the rigid active devices residing on the non-deformable platforms (i.e. islands), which are connected by the deformable interconnects (i.e. bridges). To ensure stretchable characteristic of electronics, the entire "island-bridge" structure needs to be integrated on soft, elastomeric substrates. The thesis first introduces the technology of transfer printing that allows brittle electronic systems fabricated on conventional substrate to be integrated onto target soft substrates of interest. Analytical models are developed to study the critical conditions for advanced techniques with high contrast modulation of adhesion suitable for transfer printing processes.;The second part of the thesis explores the material and composite substrate design for mechanically robust configuration of wearable tattoo electronics, with capabilities in multiple cycles of use in realistic settings. An analytical mechanics model for bilayer composite substrate design shows the effects from two layers can be decoupled in providing a robust, high strength system that maintains stretchable characteristics. The soft layer on top facilitates the stretchability of electronic systems and the relatively stiff layer at the bottom can significantly enhance their strength. In addition, the bottom substrate layer can be tailored to precisely match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering.;Lastly, the thesis presents a comprehensive set of materials and design strategies for transient electronic systems that offer stable operation followed by a complete dissolution in the human body and/or environment. The period of stable operation is defined by dissolution of encapsulation layers, whereas the functional degradation of the device system is defined by dissolution of either sensors or conductors. A model of reactive diffusion is established to understand the dissolution behaviors at both the material- and device-levels.
机译:电子学的最新进展实现了功能强大的生物医学设备,该设备通过监测生命信号和提供治疗手段大大降低了治疗风险。植入式设备可以帮助我们更好地了解各种疾病的行为和影响。然而,在初始植入之后,需要额外的程序来移除装置。如今,常规电子器件形成在脆性晶片基板的平面表面上,并且与人体组织的复杂拓扑结构不兼容。因此,可伸缩和可吸收电子设备是可植入监护仪和体内治疗仪设计过程中缺少的两个环节。本文提出了一种潜在的医疗器械背后的挑战,力学和设计策略,该医疗器械(a)与人类生理学融为一体,并且(b)在其有效运行后完全溶解。植入的设备将更好地理解器官功能,并为诸如心脏衰竭等严重疾病提供更省时的治疗。可伸缩的电子设备可以通过两种概念上不同但互补的方法来实现。一种依靠传统布局中固有可拉伸的有机材料的开发,另一种依靠力学指导的无机材料的可拉伸设计。后者中的许多可拉伸系统采用“岛桥”设计策略,其中刚性有源装置位于不可变形的平台(即岛)上,平台通过可变形的互连件(即桥)连接。为了确保电子产品的可拉伸特性,需要将整个“岛桥”结构集成在柔软的弹性基材上。本文首先介绍了转移印刷技术,该技术允许将在常规基板上制造的脆性电子系统集成到目标软基板上。开发了分析模型,以研究适用于转移印刷工艺的具有高对比度的粘附力高对比度调制的先进技术的关键条件。本论文的第二部分探讨了可穿戴纹身电子产品的机械坚固配置的材料和复合材料基板设计,并具有以下功能:在实际设置中使用多个循环。双层复合衬底设计的分析力学模型显示,可以通过提供可保持可拉伸特性的坚固,高强度系统来分离两层的效果。顶部的软层有利于电子系统的拉伸,而底部的相对较硬的层可以显着增强其强度。此外,可以对底层基底层进行定制,以精确匹配生物组织的非线性特性,其应用机会从软生物医学设备到用于组织工程的构造物不等。最后,本文提出了一套全面的材料和设计提供稳定运行,然后完全溶解在人体和/或环境中的瞬态电子系统的策略。通过封装层的溶解来确定稳定运行的时间,而通过传感器或导体的溶解来定义设备系统的功能退化。建立了反应扩散模型,以了解材料和设备级的溶解行为。

著录项

  • 作者

    Cheng, Huanyu.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Mechanics.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号