首页> 外文学位 >Density Functional Theory-based Modeling of Cathode Materials for Electronic and Electrochemical Systems.
【24h】

Density Functional Theory-based Modeling of Cathode Materials for Electronic and Electrochemical Systems.

机译:基于密度泛函理论的电子和电化学系统阴极材料建模。

获取原文
获取原文并翻译 | 示例

摘要

Materials functioning as cathodes in electronic devices such as low work function electron emitters and electrochemical devices such as solid oxide fuel cells and lithium-ion batteries have become ubiquitous in modern technology. For electron emission applications, we have studied scandate cathodes with Ba and BaO and proposed the most probable mechanism responsible for the low work functions observed in experimental scandate cathodes. Next, we considered a representative set of transition metal-containing perovskite oxides as new potential electron emission materials. We have explained trends in perovskite work functions via band filling, bond hybridization, and surface dipoles. In addition, we computationally predicted that SrVO3, particularly when doped with Ba, may function as an ultra-low work function material and also exhibit a very long thermionic emission lifetime. Our work on solid oxide fuel cell cathodes used high-throughput Density Functional Theory methods to screen approximately 1300 distinct perovskite oxide compositions for new fuel cell cathodes. We used first principles-based bulk electronic structure descriptors to screen for high oxygen reduction and oxygen evolution reaction activity, and multicomponent phase stability analysis to assess the stability of all compounds under realistic operating conditions. This study resulted in a list of several new high activity, high stability perovskite materials that are promising for next generation fuel cell cathodes. Our research of lithium-ion batteries focused on protective cathode coatings and the conversion cathode material FeF3. For coatings, we developed an electrolyte model and have shown that practical battery coatings need to be amorphous or otherwise highly defected to facilitate sufficiently fast lithium diffusion. For FeF3, we have combined Density Functional Theory with X-ray absorption spectroscopy to determine the sequence of material phases occurring during charge and discharge cycles, and have shown that the reaction pathway of FeF3 during charge and discharge proceeds through the same set of phases. Our results demonstrate that rational nanostructuring of the FeF 3 cathode can most likely mitigate a sizeable fraction of the overpotentials resulting from nucleation of new phases and compositional inhomogeneity in the battery, thus making this material one step closer to being a viable option for future high energy density lithium-ion batteries.
机译:在诸如低功函数电子发射器之类的电子设备和诸如固体氧化物燃料电池和锂离子电池之类的电化学设备中用作阴极的材料在现代技术中已变得无处不在。对于电子发射应用,我们用Ba和BaO研究了scan酸盐阴极,并提出了最可能的机理,该机理是在实验experimental酸盐阴极中观察到的低功函的原因。接下来,我们考虑了一组代表性的含过渡金属的钙钛矿氧化物作为新的潜在电子发射材料。我们已经通过带填充,键杂交和表面偶极子解释了钙钛矿功函数的趋势。此外,我们通过计算预测到,SrVO3(尤其是掺有Ba的情况)可以用作超低功函材料,并且还具有非常长的热电子发射寿命。我们在固体氧化物燃料电池阴极上的工作使用高通量密度泛函理论方法筛选了约1300种不同的钙钛矿氧化物成分用于新的燃料电池阴极。我们使用基于第一原理的本体电子结构描述符来筛选高氧还原和氧释放反应活性,并使用多组分相稳定性分析来评估所有化合物在实际操作条件下的稳定性。这项研究得出了几种新的高活性,高稳定性钙钛矿材料的清单,这些材料有望用于下一代燃料电池阴极。我们对锂离子电池的研究侧重于保护性阴极涂层和转换阴极材料FeF3。对于涂层,我们开发了一种电解质模型,并显示出实际的电池涂层需要为非晶态或其他缺陷形式,以促进足够快速的锂扩散。对于FeF3,我们将密度泛函理论与X射线吸收光谱法相结合,以确定在充放电循环中发生的材料相的顺序,并显示出FeF3在充放电期间的反应路径通过同一组相进行。我们的结果表明,FeF 3阴极的合理纳米结构化最有可能缓解新相的成核和电池成分不均匀性所导致的过大一部分过电位,从而使这种材料更接近于成为未来高能的可行选择。高密度锂离子电池。

著录项

  • 作者

    Jacobs, Ryan.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Materials science.;Electrical engineering.;Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 328 p.
  • 总页数 328
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号