首页> 外文学位 >Biological utilization of pyrolytic acetic acid for lipid-rich algal biomass production: Substrate detoxification, inhibition mechanism, and fermentation optimization.
【24h】

Biological utilization of pyrolytic acetic acid for lipid-rich algal biomass production: Substrate detoxification, inhibition mechanism, and fermentation optimization.

机译:热解乙酸用于富脂质藻类生物质生产的生物利用:底物解毒,抑制机理和发酵优化。

获取原文
获取原文并翻译 | 示例

摘要

Acetic acid derived from fast pyrolysis of lignocelulosic biomass is a promising substrate for microalgae Chlamydomonas reinhardtii fermentation for producing lipid-rich biomass. However, pyrolytic-acetate-containing substrate has an extremely complex composition and highly inhibitory to microorganism due to the various toxic contaminants. In this dissertation, this work is to improve the C. reinhardtii fermentation performance through various detoxification practice for enhancing the fermentability of the C. reinhardtii. The inhibitory mechanisms of toxic compounds to the algal culture were also studied. Finally, the algal fermentation on pyrolytic acetic acid was optimized though the development of various fermentation strategies. When growing in raw bio-oil without any detoxification treatment, the algae can only tolerate up to 0.1 wt% of pyrolytic acetic acid stream. Alkaline treatment and oxidative treatment were applied to detoxification of pyrolytic acetic acid substrate. Addition of KOH, NaOH or Ca(OH)2 can significantly reduce the toxicity and improved algal fermentability by 20, 40 and 55 times, respectively. Alkali species used, treatment pH and treatment temperature were found all influencing the effectiveness of the alkali treatment. When oxidative treatment was further applied to NaOH-treated pyrolytic acetic acid substrate, the maximum cell density and biomass productivity was improved under each level inclusion of treated pyrolytic substrate although the cell still cannot tolerate the higher inclusion of the pyrolytic substrate. It was also found that directed evolution of algal strain increased the tolerance of algae strain; the maximum tolerance level of pyrolytic substrate by the evolved strain increased to 5.5wt% as comparted to the maximum tolerant level of 4% by the wild type strain.
机译:来自木质纤维素生物质快速热解的乙酸是微藻莱茵衣藻发酵生产富含脂质生物质的有希望的底物。然而,由于各种有毒污染物,含热解乙酸酯的底物具有极其复杂的组成并且对微生物具有高度抑制性。本文旨在通过多种排毒实践来提高莱茵衣藻的发酵性能,以提高莱茵衣藻的发酵性能。还研究了有毒化合物对藻类培养物的抑制机理。最后,通过各种发酵策略的发展,对在热解乙酸上的藻类发酵进行了优化。当在未经任何解毒处理的原始生物油中生长时,藻类最多只能耐受0.1 wt%的热解乙酸物流。碱性处理和氧化处理被应用于热解乙酸底物的解毒。添加KOH,NaOH或Ca(OH)2可以分别将毒性降低,藻类发酵能力分别提高20倍,40倍和55倍。发现所使用的碱种类,处理pH和处理温度均影响碱处理的效果。当将氧化处理进一步应用于NaOH处理的热解乙酸底物时,尽管处理过的热解底物的每个含量都可以提高最大细胞密度和生物质生产率,但是该细胞仍然不能忍受更高含量的热解底物。还发现藻类菌株的定向进化增加了藻类菌株的耐受性。与野生型菌株的最大耐受水平相比,进化菌株对热解底物的最大耐受水平提高到5.5wt%。

著录项

  • 作者

    Zhao, Xuefei.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Engineering.;Chemical engineering.;Agriculture.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号