首页> 外文学位 >Protein function and interactions in Gametophytic Self-Incompatibility: Collaborative recognition of S-RNase in vivo.
【24h】

Protein function and interactions in Gametophytic Self-Incompatibility: Collaborative recognition of S-RNase in vivo.

机译:配子体自我不相容性中的蛋白质功能和相互作用:体内S-RNase的协同识别。

获取原文
获取原文并翻译 | 示例

摘要

My dissertation is based on studies of Gametophytic Self-Incompatibility (GSI), a system that allows plants to reject "self" pollen while accepting "non-self" pollen, thus preventing inbreeding and promoting genetic diversity in populations. In GSI, pollen grains deposited on the stigma of the floral pistil germinate and begin to grow through the transmitting tract tissue of the style. As the pollen tubes grow through the transmitting tract, they import recognition variants of a secreted protein known as the S-locus ribonuclease (S-RNase). If there is a match of recognition specificity between the pollen tube and the imported S-RNase, the S-RNase will degrade pollen-tube RNA, inhibiting protein synthesis & pollen tube growth. Conversely, if there is no match between pollen tube and S-RNase, the action of the S-RNase is inhibited, and the pollen tube continues to grow normally to the ovary.;Inside pollen tubes, non-self S-RNases are recognized by the SCF SLF complex comprising multiple variants of the pollen-recognition protein named SLF, along with three other proteins: SSK1, SBP1 and Cullin-1. I have been using protein-interaction assays (BiFC assays) based on the reconstitution of a fluorescent protein, to study interactions between components of the SCFSLF complex and S-RNase.;Previous studies revealed that multiple SLF genes collaborate during non-self S-RNase recognition. Based on my data, SLF10 and to a lesser extent, SLF1, SLF3, SLF4 and SLF5 showed interaction with different S-RNase constructs. In addition, data in my study suggests that a "bridge" protein may be needed to stabilize proteins interactions between SLF and S-RNase. The work that has been completed will lead to a better understanding of self versus non-self recognition in pollination. An understanding of GSI mechanisms should also lead to the ability to manipulate breeding barriers in agricultural crops such as tomatoes, potatoes and fruit trees.
机译:我的论文基于配子植物自交不亲和性(GSI)的研究,配子体自交不亲和(GSI)系统允许植物在接受“非自身”花粉的同时拒绝“自身”花粉,从而防止近亲繁殖并促进种群的遗传多样性。在GSI中,沉积在花雌蕊柱头上的花粉粒发芽并开始通过该花样的传播途径组织生长。随着花粉管通过传输管的生长,它们会导入一种分泌蛋白的识别变异体,即S-基因座核糖核酸酶(S-RNase)。如果花粉管和导入的S-RNase之间的识别特异性相匹配,则S-RNase将降解花粉管RNA,从而抑制蛋白质合成和花粉管生长。相反,如果花粉管和S-RNase之间不匹配,则S-RNase的作用被抑制,花粉管继续向卵巢正常生长。在花粉管中,可以识别出非自身S-RNase。通过SCF SLF复合物,其包含名为SLF的花粉识别蛋白的多种变体,以及其他三种蛋白:SSK1,SBP1和Cullin-1。我一直在使用基于荧光蛋白重构的蛋白质相互作用测定法(BiFC测定法)研究SCFSLF复合物与S-RNase组分之间的相互作用。以前的研究表明,多个SLF基因在非自身S- RNase识别。根据我的数据,SLF10在较小程度上显示SLF1,SLF3,SLF4和SLF5与不同的S-RNase构建体相互作用。另外,我的研究数据表明,可能需要“桥”蛋白来稳定SLF和S-RNase之间的蛋白相互作用。已经完成的工作将使人们更好地了解授粉中的自我认知与非自我认知。对GSI机制的理解还应该能够操纵诸如西红柿,土豆和果树之类的农作物的繁殖障碍。

著录项

  • 作者

    Qi, Qinzhou.;

  • 作者单位

    Northern Illinois University.;

  • 授予单位 Northern Illinois University.;
  • 学科 Molecular biology.;Genetics.;Plant sciences.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号