首页> 外文学位 >Protein-protein interactions in gametophytic self-incompatibility: The potential role of protein turnover in regulating pollen rejection.
【24h】

Protein-protein interactions in gametophytic self-incompatibility: The potential role of protein turnover in regulating pollen rejection.

机译:配子体自我不相容性中的蛋白质相互作用:蛋白质更新在调节花粉排斥中的潜在作用。

获取原文
获取原文并翻译 | 示例

摘要

Our laboratory studies the molecular mechanism of gametophytic self-incompatibility (GSI) in Petunia hybrida, a genetic barrier to inbreeding which is based on communication between the pollen tube and the style. In GSI, the floral pistil recognizes and rejects self-pollen. GSI is controlled in the style by S-locus encoded glycoproteins, which are functional ribonucleases. Understanding the interaction between the pollen and the style is difficult since the pollen determinant of gametophytic self-incompatibility has not yet been identified. Currently, there are two models that describe the nature of the pollen determinant of gametophytic self-incompatibility. According to one model, the stylar S-ribonuclease enters the “self” pollen tube through a yet unknown receptor located on the surface of the pollen tube and degrades its RNA, resulting in the inhibition of protein synthesis and pollen tube growth arrest. An alternative model proposes that pollen tubes express an intracellular inhibitor of non-self S-ribonucleases. In this case, any S-ribonuclease can enter the pollen tube, but if it does not match the haplotype of the style, it is inhibited.; To investigate protein-protein interactions in gametophytic self-incompatibility, we used the yeast two-hybrid system to identify proteins that could interact with the S-ribonuclease protein. These assays identified a pollen-expressed protein, which we have named PhSBP1, that appears to bind with a high degree of specificity to the Petunia hybrida S-ribonuclease. Although PhSBP1 activates reporter gene expression only when expressed in tandem with an S-ribonuclease protein, binding is not allele specific, and PhSBP1 does not cosegregate with the S-locus. Sequence analysis demonstrated that PhSBP1 contained a C-terminal cysteine-rich region that includes a RING-HC domain. Because many such RING-finger domain proteins appear to function as E3 ubiquitin ligases, our results suggest that ubiquitination and protein degradation may play a role in regulating self-incompatibility interactions. Together, these results suggest that PhSBP1 may be a candidate for the recently proposed general inhibitor (RI) of self-incompatibility ribonucleases.
机译:我们的实验室研究了 Petunia hybrida 的配子体自我不相容性(GSI)的分子机制,这是基于花粉管和花粉管之间沟通的近亲繁殖遗传障碍。在GSI中,花蕊识别并拒绝自花粉。 GSI由S-基因座编码的糖蛋白控制,该糖蛋白是功能性核糖核酸酶。由于尚未确定配子体自我不相容性的花粉决定因素,因此难以理解花粉与花粉之间的相互作用。当前,有两种模型描述配子体自我不相容性的花粉决定因素的性质。根据一种模型,茎型S-核糖核酸酶通过位于花粉管表面的未知受体进入“自身”花粉管,并降解其RNA,从而抑制蛋白质合成和阻止花粉管生长。备选模型提出,花粉管表达非自身S-核糖核酸酶的细胞内抑制剂。在这种情况下,任何S-核糖核酸酶都可以进入花粉管,但如果与花型的单倍型不匹配,则会被抑制。为了研究配子体自我不相容性中的蛋白质-蛋白质相互作用,我们使用了酵母双杂交系统来鉴定可以与S-核糖核酸酶蛋白质相互作用的蛋白质。这些测定法鉴定了花粉表达的蛋白,我们将其命名为PhSBP1,该蛋白似乎与 Petunia hybrida S-核糖核酸酶具有高度的特异性结合。尽管PhSBP1仅在与S-核糖核酸酶蛋白串联表达时才激活报告基因表达,但结合不是等位基因特异性的,并且PhSBP1不会与S-基因座共分离。序列分析表明,PhSBP1包含一个C端富含半胱氨酸的区域,其中包括RING-HC结构域。因为许多这样的RING-手指结构域蛋白似乎起着E3泛素连接酶的作用,所以我们的结果表明,泛素化和蛋白降解可能在调节自身不相容性相互作用中起作用。在一起,这些结果表明PhSBP1可能是最近提出的自我不相容核糖核酸酶的一般抑制剂(RI)的候选人。

著录项

  • 作者

    Ordanic, Maja.;

  • 作者单位

    Northern Illinois University.;

  • 授予单位 Northern Illinois University.;
  • 学科 Biology Molecular.; Biology Genetics.; Biology Plant Physiology.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分子遗传学;遗传学;植物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号