首页> 外文学位 >Combining geostatistical analysis and flow-and-transport models to improve groundwater contaminant plume estimation.
【24h】

Combining geostatistical analysis and flow-and-transport models to improve groundwater contaminant plume estimation.

机译:结合地统计分析和流动与运输模型,以改善地下水污染物羽流估算。

获取原文
获取原文并翻译 | 示例

摘要

Groundwater is an important resource, which is often contaminated. In order to ensure a sustainable supply, groundwater has to be monitored, contaminant plumes must be estimated accurately, and remediation operations must be carried out effectively. However, groundwater monitoring networks often do not have enough monitoring wells, and those wells are not always optimally located for the purpose of plume estimation, using existing methods. Moreover, budgetary constraints limit the number of available samples.;Existing methods for plume estimation rely either on the spatial correlation of plume concentrations, or on the underlying physics of groundwater flow and contaminant transport. Often, practitioners who rely on one of these approaches neglect available information which can be used in methods belonging to the other approach. For example, use of kriging, a geostatistical method relying on spatial correlation, often precludes the use of transport information, which may be readily available. Conversely, flow-and-transport models do not explicitly consider spatial correlation of contaminant concentrations.;In this work, these two approaches are combined, in order to optimally use all available information, to improve the quality of plume estimation. Specifically, two geostatistical methods---Inverse/Forward Modeling and Transport-Enhanced Kriging---are developed that combine transport models with spatial or temporal correlation. These methods are versatile, can apply to a variety of situations, and can work with many kinds of available input data and transport models. A method is also developed to estimate flow and transport parameters simultaneously with the plume concentration, for cases in which this information is unknown or uncertain. Finally, as monitoring network configuration has a dramatic effect on estimation results (but is specific to the plume estimation method used), a method for choosing optimal monitoring sites is presented.;All of the methods were tested in a variety of numerical experiments with synthetic homogeneous and heterogeneous data. In addition, several laboratory experiments were performed in a large sand tank, to assess the performance of the methods. Overall, the new methods yield results that are superior to those obtained by common existing methods such as kriging, with a better reproduction of the true plume shapes and lower uncertainty.
机译:地下水是重要的资源,经常被污染。为了确保可持续的供应,必须对地下水进行监控,必须准确估算出污染物羽流,并且必须有效地进行补救措施。然而,地下水监测网络通常没有足够的监测井,并且使用现有方法,出于羽流估计的目的,这些井并非总是处于最佳位置。此外,预算限制限制了可用样本的数量。现有的羽流估计方法要么依赖于羽流浓度的空间相关性,要么依赖于地下水流动和污染物运移的底层物理原理。通常,依靠这些方法之一的从业者会忽略可用于属于另一种方法的信息。例如,使用克里金法(一种依赖于空间相关性的地统计方法)通常会阻止使用可能容易获得的运输信息。相反,流动模型没有明确考虑污染物浓度的空间相关性。在这项工作中,将这两种方法结合起来,以便最佳地利用所有可用信息,从而提高羽流估计的质量。具体来说,开发了两种地统计学方法-逆向/正向建模和运输增强克里格法-将运输模型与空间或时间相关性结合在一起。这些方法用途广泛,可以应用于各种情况,并且可以使用多种可用的输入数据和传输模型。对于这种信息未知或不确定的情况,还开发了一种方法来与羽流浓度同时估算流量和运输参数。最后,由于监视网络的配置对估计结果有很大的影响(但特定于所使用的羽流估计方法),因此提出了一种选择最佳监视位置的方法。所有这些方法均在各种数值模拟试验中进行了综合同类和异构数据。此外,在大型沙缸中进行了一些实验室实验,以评估方法的性能。总体而言,新方法产生的结果要优于通过常规现有方法(如克里金法)获得的结果,并具有更好的真实羽状形状再现性和较低的不确定性。

著录项

  • 作者

    Shlomi, Shahar.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号